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Abstract

We introduce a new solution concept for games with ambiguity-averse players, termed
the Ambiguity Aversion Equilibrium (AAE). In contrast to existing models that
treat ambiguity as endogenous, we model ambiguity as an exogenous feature entirely
derived from the game’s structure. Players’ ambiguity aversion is incorporated via
a non-Bayesian state-dependent expected utility framework, capturing worst-case
reasoning over uncertain states. The AAE preserves strategic interaction among
players by ensuring that ambiguity affects their evaluations but not the definition of
equilibrium itself. This approach provides new insights into how structural ambiguity
shapes behavior without relying on belief adjustments to construct equilibria. We
compare the AAE to well-known concepts in the literature, using standard finite
games to illustrate its distinctive features. Furthermore, we establish existence results
for the AAE in both pure and mixed strategies.

Keywords : ambiguity aversion, equilibrium, maxmin expected utility.
JEL classification : C70, C72, C79.

1 Introduction

It is widely acknowledged that the classical assumptions of game theory—which posit
that players are fully rational and perfectly informed about the parameters of the game—
constitute a useful but often unrealistic simplification (see, eg. Luce and Raiffa (1957),
Dominiak and Eichberger (2016)). In particular, conventional models often fail to in-
corporate ambiguity and strategic uncertainty, despite their pervasive influence on real-
world economic and social interactions. Addressing these dimensions within game-theoretic
frameworks remains a central theoretical challenge.
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‡School of Mathematics and Statistics. Carleton University, Ottawa, Canada, Email: lar-

bani61@hotmail.com

1



The integration of ambiguity aversion into strategic models began with seminal works in the
1990s (Klibanoff (1996), Lo (1996), Dow and Werlang (1994)). A common insight behind
these contributions lies in the reinterpretation of mixed-strategy Nash equilibria: in two-
player games, one player’s mixed strategy reflects the other’s subjective beliefs over possi-
ble pure strategies (Dow and Werlang (1994)). Building on this, Dow and Werlang (1994)
generalized Nash equilibrium under uncertainty by replacing probabilities with Choquet
capacities, thereby moving from additive to non-additive beliefs. Subsequent contributions,
notably by Klibanoff (1996), Lo (1996), and Marinacci (2000), modeled ambiguity aversion
through sets of priors or belief functions, enriching the theoretical foundations of games
with uncertainty. Further refinements have incorporated attitudes toward ambiguity, in-
cluding models of optimism and pessimism based on neo-additive capacities (Eichberger,
Kelsey and Schipper (2009); Eichberger and Kelsey (2014)).

Despite these advances, most existing models treat ambiguity as endogenous to the equilib-
rium concept: players’ beliefs are manipulated or constrained within the solution framework
itself, often diminishing the role of strategic interaction. Players effectively interact through
their beliefs rather than directly through strategies, leading to equilibrium definitions in
which belief consistency substitutes for classical strategic reasoning.

This paper proposes an alternative approach. We introduce an equilibrium concept for
games with ambiguity-averse players, the Ambiguity Aversion Equilibrium (AAE), in
which ambiguity is modeled as exogenous—derived entirely from the game’s structure
and independent of the equilibrium construction. Players interact via their pure or mixed
strategies, as in classical game theory, while their ambiguity aversion is embedded in their
payoff evaluations through a maxmin expected utility framework. Importantly, players
form beliefs based on the normal-form structure of the game and a status quo outcome,
but these beliefs do not define the equilibrium set. As a result, strategic interaction is
preserved, and equilibrium stability rests solely on players’ rationality, consistent with
traditional game-theoretic principles.

In this framework, players reason along the lines of: “If the current status quo is x, what
should I do?” rather than adjusting beliefs to rationalize outcomes. This preserves both
strategic logic and ambiguity aversion in a coherent manner. Our analysis focuses on
complete-information games, but the approach provides a natural foundation for extending
ambiguity models to more general settings (see, Kajii and Ui (2005), He and Yannelis (2013)
for related work on incomplete information games).

The paper proceeds as follows. Section 2 introduces the framework, Section 3 defines the
AAE concept, highlights its distinct features by comparing it to established equilibrium
notions using standard finite games, and analyzes the existence of pure-strategy equilibria
under ambiguity aversion. Section 4 extends the results to mixed strategies. Section 5
concludes with perspectives for future research.
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2 Framework

Let N = {1, . . . , n} denote the set of players, and let Xi, for each i ∈ N , be the set of
strategies available to player i. We adopt standard notation from game theory: for any
player i ∈ N , we denote by −i = N \ {i} the set of all players except i, and x−i denotes
a strategy profile of all players other than i. The set of strategy profiles of the game is
denoted by X =

∏
i∈N Xi. We assume that each Xi is a compact metric topological space

equipped with its Borel σ-algebra B(Xi), and denote by P(X−i) the set of Borel probability
measures on X−i. Throughout this paper, any subspace of a topological space inherits the
induced topology and the corresponding σ-algebra.

2.1 Non-Bayesian state-dependent preferences

We assume that all players are fully informed about the structure of the game, and that
cooperation is not permitted—the game is non-cooperative. Each player is confident in his
own rationality and, based on the known structure of the game, forms beliefs regarding the
strategies of his opponents. In other words, the (n − 1)-tuple formed by the decisions of
the other players, insofar as these constitute a source of uncertainty, serves as the “state”
for each player and directly affects the evaluation of all his possible strategies. In addition,
we assume that all players exhibit ex-ante ambiguity aversion in the sense of Gilboa and
Schmeidler (1989), with a state-dependent utility specification adapted from Hill (2019),
where the state-dependence of player’s i utility reflects the dependence of i’s decisions on
−i’s decisions (but where preferences, unlike in Hill’s model, are not imprecise).

Each player i is endowed with a preference relation ≿i,x that depends on the status quo
strategy profile x = (xi, x−i) ∈ X. Here, xi, the individual status quo strategy of player i,
refers to maintaining his current strategic choice xi, given the full profile x. Relative to this
status quo, player i evaluates and compares acts, ie. measurable functions h : X−i → Xi,
via the preference relation ≿i,x. We denote by H the set of all such acts. The set X−i of
opponents’ strategies defines the state space for player i, whileXi represents his consequence
space. An act hc ∈ H is called a constant act if there exists some xi ∈ Xi such that
hc(y−i) = xi, for all y−i ∈ X−i. Let h ∈ H, y−i, z−i ∈ X−i and ỹi ∈ Xi. Denote by h(y−i,ỹi),
the act such that:

h(y−i,ỹi)(z−i) :=

{
ỹi if z−i = y−i,

h(z−i) otherwise.

Now, accordingly, for every i ∈ N and every x ∈ X, we assume that the preference relation
≿i,x satisfies standard and adapted axioms of Hill (2019):

Weak order. ≿i,x is complete and transitive over H.
Non-degeneracy. ∃h1, h2 ∈ H st. h1 ≻i,x h2.
Continuity. ∀h′ ∈ H, the subsets {h ∈ H | h ≿i,x h′} and {h ∈ H | h′ ≿i,x h} are

closed under the uniform convergence topology on H.
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Uncertainty aversion. ∀h1, h2 ∈ H, ∀α ∈ [0, 1], if h1 ∼i,x h2, then αh1+(1−α)h2 ≿i,x

h2.

Most papers dealing with state-dependent utility adopt a framework close to that of ex-
pected utility (Karni, Schmeidler and Vind (1983)), whereas the axiomatic approaches to
ambiguity explicitly rely on constant acts (Gilboa and Schmeidler (1989)), which lose their
meaning as soon as utilities are state-dependent. The following two axioms thus reflect the
specificity of a model that draws from both strands of the literature. First, we adopt the
c-independence axiom of Gilboa and Schmeidler (1989) in place of ec-independence from
Hill (2019), since imprecise preferences are not considered here.

C-independence. ∀h, h̃, hc ∈ H, ∀α ∈ [0, 1], h ≿i,x h̃ iff αh+ (1− α)hc ≿i,x αh̃+ (1−
α)hc.

Second, the following axiom allows for a coherent definition of the notion of preference
conditional on a status quo.

State consistency. ∀y ∈ X, ∀yi, ỹi ∈ Xi, ∀h ∈ H, if, h(y−i,ỹi) ≿i,x h(y), then, ∀h̃ ∈ H,

h̃(y−i,ỹi) ≿i,x h̃(y).

The following theorem can then be established.

Theorem 1. Let i ∈ N be a player. Let ≿i,x be a preference relation over acts H, defined
relative to a status quo profile x ∈ X. The following are equivalent:
(i) The preference ≿i,x satisfies weak order, non-degeneracy, continuity, uncertainty aver-
sion, c-independence and state consistency.
(ii) There exist a continuous state-dependent payoff function ui : Xi × X−i → R, and a
null-consistent, closed, convex, nonempty set Ci(x) ⊆ P(X−i) of probability measures with
compact support such that, for all acts h1, h2 ∈ H,

h1 ≿i,x h2 ⇐⇒ inf
p∈Ci(x)

∫
X−i

ui(h1(y−i), y−i) dp(y−i) ≥ inf
p∈Ci(x)

∫
X−i

ui(h2(y−i), y−i) dp(y−i).

Proof. Assume ≿i,x satisfies the axioms of weak order, non-degeneracy, continuity, uncer-
tainty aversion, c-independence, and state consistency. Fix x ∈ X and x−i ∈ X−i. The
state consistency axiom allows us to define a local preference ≿i,x−i

over Xi such that, for
any xi, yi ∈ Xi, xi ≿i,x−i

yi if and only if there exist h, g ∈ H such that:

hx(y−i) :=

{
xi if y−i = x−i,

h(y−i) otherwise
, gy(y−i) :=

{
yi if y−i = x−i,

g(y−i) otherwise
,

and hx ≿i,x gy.

In short, xi ≿i,x−i
yi iff there exist acts h, g that coincide everywhere except at x−i, and

such that h ≿i,x g. In this way, the existence of a local preference ≿i,x−i
guarantees a

coherent interpretation of the state space X−i from the perspective of player i, and ensures
satisfaction of Hill’s state consistency axiom (A7). Under the axioms given (in particular,
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weak order, uncertainty aversion, c-independence and continuity), we can then invoke the
representation theorem of Gilboa and Schmeidler (1989): there exists a utility function
ui : Xi ×X−i → R and a closed, convex, nonempty set Ci(x) ⊆ P(X−i) such that, for all
h1, h2 ∈ H:

h1 ≿i,x h2 ⇐⇒ inf
p∈Ci(x)

∫
X−i

ui(h1(y−i), y−i) dp(y−i) ≥ inf
p∈Ci(x)

∫
X−i

ui(h2(y−i), y−i) dp(y−i).

From standard results, ui is unique up to positive affine transformations. The belief set
Ci(x) is uniquely determined in the sense of minimality and closed convex support of the
infimum representation. Null-consistency follows from the monotonicity implied by the
preference over constant acts and ensures that all priors in Ci(x) agree on the set of null
events.
Conversely, suppose that such a representation exists. Then all the axioms in (i) are sat-
isfied: weak order follows from the ordering over real numbers; non-degeneracy from the
strict inequality between integrals; continuity from continuity of ui and weak*-compactness
of Ci(x); uncertainty aversion from the convexity of Ci(x); c-independence from the linear-
ity of the expectation and state consistency from the fact that preferences over acts agree
on consequences that differ only at one state.

If player i maintains his status quo strategy xi and exhibits ambiguity aversion regarding
potential deviations by the other players, he evaluates the constant act hc ≡ xi as:

inf
p∈Ci(x)

∫
X−i

ui(xi, y−i) dp(y−i).

Our framework can be viewed as a special case of the model developed and axiomatized
by Hill (2019), where an act h is evaluated according to:

min
p∈C

∑
s∈S

p(s) min
u∈v(s)

u(h(s)),

Here, we adapt this model, which was originally formulated in the finite case with multi-
utility described by the set v(s) (to capture imprecise preferences), to the standard setting
of game theory (infinite case with single utility or payoff function), where each individual
preference ≿i,x is represented by a continuous expected utility Ui : H → R such that:

Ui(h) = inf
p∈Ci(x)

∫
X−i

ui(h(y−i), y−i) dp(y−i).

2.2 The normal form of the game

The functions ui are of the von Neumann–Morgenstern (vnm) type, they serve to evaluate
the actual payoffs of the players. By contrast, the utilities Ui capture the expected payoffs,
here understood as cautiously anticipated utilities, thus reflecting the players’ ambiguity
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aversion. We assume that all the payoff functions ui : X → R are bounded. By Theorem 1,
they are also continous, however upper semicontinuity is actually sufficient for the below
results. It is important to note that the utility Ui continues to depend on x−i, since the
argument x appears in the belief correspondence Ci over which the infimum is computed.
Consequently, player i simultaneously accounts for both his beliefs and the strategies of his
opponents. In other words, strategic interaction remains embedded within the expected
utilities. This feature marks a fundamental distinction between our model and the related
equilibrium concepts discussed earlier. We denote the resulting normal-form game by:

G = (N,Xi, ui, Ui, Ci, i ∈ N).

By construction of the game G, ambiguity is entirely incorporated within the expected
utilities Ui and the belief correspondences Ci. From this point onward, ambiguity is treated
as an exogenous characteristic of the model.

3 The pure strategy case

In the presence of ambiguity-averse players, it is essential to adapt the classical equilib-
rium concept to account for how players form cautious assessments of payoffs based on
their beliefs. We now introduce an equilibrium notion that incorporates exogenous ambi-
guity aversion in the case where players adopt pure strategies. This definition extends the
standard best-response criterion by integrating the players’ perceived payoffs, which reflect
their worst-case evaluations consistent with their ambiguity aversion.

Definition 1. An exogeneous ambiguity aversion pure strategy equilibrium (AAEps) for
G is a strategy profile x ∈ X such that: for all i ∈ N , for all x′

i ∈ Xi, Ui(x
′
i, x−i) ≤ Ui(x).

A particularly relevant case arises when players are also confident in the rationality of their
opponents. In this context, each player anticipates only individually rational deviations
from any given strategy profile. This situation is further illustrated through the examples
provided below. We denote the best response correspondence of player i by:

βi : X → Xi, defined at each x ∈ X, by βi(x) = arg max
yi∈Xi

ui(yi, x−i),

which represents the set of optimal strategies available to player i in response to the status
quo strategy profile x. This correspondence is well-defined and guaranteed to be nonempty
under the structural assumptions imposed on the game G.

When player i evaluates a given strategy profile x, he anticipates that his opponents may
choose deviations from x within the product set β−i(x) =

∏
j ̸=i βj(x), in accordance with

a probability measure belonging to his belief set Ci(x). The assumption that opponents
are rational, together with the independence of their deviations, is then formalized by the
following condition:

[A1] ∀i ∈ N,Ci(x) ⊂ ⊗j ̸=iP(βj(x)),
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where we use the following notation: given two measurable spaces E and F , the product set
of probability measures is defined by: P(E)⊗P(F ) = {p⊗q : p ∈ P(E), q ∈ P(F )}. Thus,
to each i, we associate a state-contingent belief correspondence Ci : X → ⊗j ̸=iP(Xj), such
that Ci(x) ⊂ ⊗j ̸=iP(βj(x)), for every x ∈ X.

In standard analysis, a strategy is rationalizable if it is a best response to some belief about
the opponents’ strategies, where those beliefs themselves only put weight on other ratio-
nalizable strategies (Bernheim (84)). Rationalizability is defined iteratively by eliminating
strategies that are never best responses. Every Nash equilibrium is rationalizable, but
rationalizability often shrinks the set of plausible equilibria when an equilibrium relies on
implausible beliefs. Our concept of a pure-strategy equilibrium, AAEps, considers players
insofar as they evaluate strategies through worst-case payoffs (ambiguity aversion), assume
opponents are rational, ie. only deviations within their best-response correspondences βj(x)
are possible, and form beliefs Ci(x) restricted to rational opponents’ deviations. Hence,
players choose cautious best responses to rationalizable deviations of others.

3.1 Examples

Our structure aligns with rationalizability analysis in the sense where the set βj(x) corre-
sponds to the rationalizable strategies of player j at x. [A1] ensures players only believe
others play within their rationalizable sets. However, the worst-case evaluation is stricter
than standard rationalizability: instead of a best response to some belief about rationaliz-
able strategies, players choose a best response to the least favorable belief in Ci(x). Thus,
AAEps can be seen as a refinement of rationalizability under ambiguity aversion.

We now present several examples to illustrate this concept of equilibrium and to compare it
with both the standard Nash equilibrium and well-established equilibrium concepts under
ambiguity found in the literature. Throughout these examples, we adopt the extreme
cautious case consistent with assumption A1, ie. for every x ∈ X, Ci(x) = ⊗j ̸=iP(βj(x)).
As a result, the modified utility functions Ui simplify to the following expression:

∀x ∈ X,Ui(x) = inf
y−i∈β−i(x)

ui(xi, y−i).

Example 1. In the example below, the left matrix displays the actual payoffs u1 and
u2 of the original two-player game, while the right matrix presents the perceived utilities
U1 and U2, computed under the assumption that Ci(x) = P(β−i(x)), for each player
i ∈ N = {1, 2}. Player 1 chooses among rows l1, l2, and l3 while player 2 chooses among
columns c1, c2, and c3.

original payoffs (u1, u2) game payoffs (U1, U2)
(−1,−1) (−1,−1) (−1,−1)
(−1,−1) (1, 1) (2, 2)
(−1,−1) (3, 3) (4, 4)

(−1,−1) (−1, 3) (−1, 4)
(2,−1) (2, 3) (2, 4)
(4,−1) (4, 3) (4, 4)
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We see that the original game has two Nash equilibria: (l1, c1) and (l3, c3). However, the
equilibrium (l1, c1) appears highly implausible. Even if player 1 lacks access to player 2’s
payoffs, strategy l3 strictly dominates both l1 and l2, making it the rational choice for
player 1. By symmetry, the same reasoning applies to player 2, for whom c3 strictly dom-
inates c1 and c2. Thus, both players are led to choose their dominant strategies l3 and c3,
reinforcing the relevance of (l3, c3) as the only credible Nash equilibrium. In other words,
(l1, c1) is a Nash equilibrium but not rationalizable in a strong sense. Rationalizability
and AAEps both select (l3, c3) as the credible outcome.

We observe that, similar to the original game, the models of Klibanoff (1996), Lo (1996),
and Dow and Werlang (1994) can also select (l1, c1) as an equilibrium.1 Let δz denote
the degenerate probability concentrated at z. In this setting, by choosing β1 = {δC1},
β2 = {δL1}, σ1 = δL1 , and σ2 = δC1 , we find that the quadruple (σ1, σ2, β1, β2) constitutes
an equilibrium under uncertainty aversion in the sense of Klibanoff (1996), for the original
game. Moreover, it is straightforward to verify that (β1, β2) defines a Nash equilibrium
under uncertainty according to Dow and Werlang (1994), as well as a belief equilibrium in
the sense of Lo (1996). In contrast, within our framework, (l3, c3) uniquely emerges as the
only equilibrium outcome, as shown in the matrix on the right.

A more instructive case arises when we consider the following modification of the original
game:

original payoffs (u1, u2) game payoffs (U1, U2)
(−1,−1) (−1,−1) (−1,−1)
(−1,−1) (4, 6) (6, 4)
(−1,−1) (6, 4) (4, 6)

(−1,−1) (−1, 4) (−1, 4)
(4,−1) (4, 4) (4, 4)
(4,−1) (4, 4) (4, 4)

where the sub-matrix
(4, 6) (6, 4)
(6, 4) (4, 6)

represents a modification of the matching pennies game. The unique Nash equilibrium of
this game is (l1, c1), which also qualifies as an equilibrium under ambiguity à la Klibanoff
(1996); Lo (1996); Dow andWerlang (1994). However, under our model, the set of equilibria
is given by {(l2, c2), (l2, c3), (l3, c2), (l3, c3)}. In other words, player 1 is indifferent between
playing l2 or l3, and player 2 between c2 or c3. In this modified matching pennies game,
the unique Nash equilibrium (l1, c1) fails under ambiguity-averse rationalizability. The
model instead yields the equilibrium set {(l2, c2), (l2, c3), (l3, c2), (l3, c3)}. This outcome
appears more realistic, as it reflects the intuitive resolution of the matching pennies game:
players are indifferent among their options, and all resulting strategy profiles constitute
equilibria in the sense of Definition 1.

The following example presents the minimum-effort game, as discussed in Dominiak and
Eichberger (2016), which itself simplifies an earlier example from Huyck, Battalio, and Beil
(1990).

1It is worth noting that Dow and Werlang (1994) originally formulated their equilibrium concept in
terms of capacities rather than traditional probability measures.
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Example 2. There are two players, N = {1, 2}, each of whom chooses an effort level of 1,
2, or 3—represented by actions l1, l2, l3 for player 1 and c1, c2, c3 for player 2. Each player’s
payoff is given by twice the minimum of the two efforts minus their own contribution, as
shown in the original payoff matrix:

original payoffs (u1, u2) game payoffs (U1, U2)
(1, 1) (1, 0) (1,−1)
(0, 1) (2, 2) (2, 1)
(−1, 1) (1, 2) (3, 3)

(1, 1) (1, 2) (1, 3)
(2, 1) (2, 2) (2, 3)
(3, 1) (3, 2) (3, 3)

It is easy to verify that the original game admits the following set of Nash equilibria:

{(l1, c1), (l2, c2), (l3, c3)}.

However, our model refines this set by selecting only the dominant equilibrium, namely
(l3, c3), as the unique solution.

The Nash equilibrium arises through the selection of all fixed points of mutual best re-
sponses. Rationalizability selects strategies surviving iterated deletion of dominated strate-
gies, consistent with common knowledge of rationality. Finally, AAEps proposes a refine-
ment that restricts beliefs to rationalizable deviations and evaluates them cautiously via
worst-case payoff. Therefore, AAEps can be reframed as an ambiguity-sensitive rational-
izability refinement of Nash equilibrium.

3.2 Properties of AAEps

We now present some basic and straightforward properties of the equilibrium introduced in
Definition 1. To ensure that all involved objects are properly defined, we assume through-
out the following properties that:

[A2] All the utilities ui are continuous, the strategy spaces Xi are compact, and the
beliefs x 7→ Ci(x) ⊂ P(X−i) have weak∗-closed nonempty values.

The properties of the AAEps depend fundamentally on the structure of the players’ belief
correspondences. As we will illustrate, the AAEps framework encompasses and generalizes
several well-known equilibrium concepts, contingent on the specific form of these correspon-
dences. Importantly, our formulation is intentionally broad and not limited to particular
specifications of beliefs. Therefore, any limitations or potential drawbacks associated with
the AAEps equilibrium should be interpreted as stemming from specific modeling choices
regarding belief correspondences, rather than from intrinsic shortcomings of the general
framework itself.

We begin by examining the following case (where δx−i
denotes the degenerate probability

concentrated at x−i):

[C1] ∀i ∈ N, ∀x ∈ X,Ci(x) = {δx−i
}.
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Property 1. Under C1, the AAEps coincides with the Nash equilibrium.

The proof is omitted as it is straightforward.

Thanks to this property, it is legitimate to view the AAEps as a natural generalization of
the Nash equilibrium to settings where players exhibit ambiguity aversion. In particular,
the classical Nash equilibrium is recovered when the players’ belief correspondences satisfy
C1.

Consider, now, the next condition:

[C2] ∀i ∈ N, ∀x ∈ X, δx−i
∈ Ci(x).

The condition C2 is equivalent to:

Ui(x) = min

{
inf

p∈Ci(x)

∫
X−i

ui(xi, y−i) dp(y−i), ui(x)

}
,∀x ∈ X.

In other words, each player i perceives a payoff that is at most equal to the actual payoff,
meaning Ui(x) ≤ ui(x). This condition can be interpreted as reflecting an exaggerated
form of ambiguity aversion.

Denote by AAE(G) the set of all AAEps of G and by I(G) the set of individually rational
strategy profiles in G, that is, strategy profiles where no player can unilaterally guarantee
themselves a strictly higher payoff, regardless of the actions of others:

I(G) = {x ∈ X : ∀i ∈ N, ∀x′
i ∈ Xi,∃y−i ∈ X−i, ui(x

′
i, y−i) ≤ ui(x)} .

Property 2. Under C2, AAE(G) ⊂ I(G).

This property means that any AAEps is individually rational.

Proof. If x ∈ AAE(G), then by definition Ui(x
′
i, x−i) ≤ Ui(x), for all i ∈ N and all

x′
i ∈ Xi. Under A2, it follows directly that, for every x′

i ∈ Xi, there exists y−i ∈ X−i such
that ui(x

′
i, y−i) ≤ Ui(x

′
i, x−i) ≤ Ui(x) ≤ ui(x). This implies that x ∈ I(G), meaning x is

individually rational.

Let us denote by sN(G) the set of strict Nash equilibria of G, that is the set of strategy
profiles x ∈ X such that: ∀i ∈ N, ∀x′

i ∈ Xi \ {xi}, ui(x
′
i, x−i) < ui(x).

For the purpose of establishing the next result, we need the following condition, stronger
than C2:

[C3] ∀i ∈ N, ∀x ∈ X,Ci(x) = C1
i (x) ∪ {δx−i

} and C1
i (x) ⊂ P(β−i(x)).

Property 3. Under C3, sN(G) ⊂ AAE(G).

Proof. First, observe that C3 implies that, for all i ∈ N , all x ∈ X, we have ui(x) ≥
Ui(x). Now, let x ∈ sN(G) and assume by contradiction that x /∈ AAE(G). Then,
there exists x′

i ∈ Xi such that Ui(x
′
i, x−i) > Ui(x). From C3, we know that ui(x

′
i, x−i) ≥

Ui(x
′
i, x−i) > Ui(x). Since x ∈ sN(G), by definition βi(x) = {xi}, for every i ∈ N .

Applying C3 again, we obtain Ci(x) = {δx−i
}, so: Ui(x) = ui(x). Thus, the inequality

becomes: ui(x
′
i, x−i) ≥ Ui(x

′
i, x−i) > Ui(x) = ui(x), which is a contradiction. Therefore,

we conclude that sN(G) ⊂ AAE(G).
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3.3 Existence of AAEps

Given the complexity of the modified utility functions Ui, it is reasonable to anticipate that
the existence conditions for equilibrium may be restrictive. We first establish equilibrium
existence within a specific class of games—namely, finite games satisfying A1—before
presenting a more general existence result.

Proposition 1. Under A1, suppose N = {1, 2}, each strategy set Xi is finite an endowed
with the discrete topology, and Ci(x) = P(β−i(x)), for i ∈ N . Then, the game G admits at
least one AAEps.

Proof. Let us first observe that under the assumptions of the proposition, Ci depends only
on xi. Specifically, for every xi ∈ Xi and all x1

−i, x
2
−i ∈ X−i, we have: Ci(xi, x

1
−i) =

Ci(xi, x
2
−i). This follows from the fact that β−i(xi, x−i) = argmaxy−i∈X−i

u−i(xi, y−i) does
not depend on x−i. Consequently, Ci(xi, x−i) depends only on xi, and we can simply write
Ci(xi) instead of Ci(xi, x−i). The modified utilities introduced earlier thus reduce to:

Ui(xi, x−i) = inf
p∈Ci(xi)

∫
X−i

ui(xi, y−i) dp(y−i) = Ui(xi).

In other words, Ui depends solely on player i’s own strategy xi. Since each Xi is finite,
the functions Ui attain their maximum at some x̄i ∈ Xi. The profile (x̄i)i∈N is clearly an
AAEps.

Next, we present a general existence result. In what follows, the spaces of probability
measures P(X−i) are endowed with the weak∗-topology, and all corresponding product
spaces are equipped with the associated product-topology.

Theorem 2. Assume that the following conditions are satisfied. For all i ∈ N :
(i) The strategy set Xi is a convex, compact subset of a locally convex topological vector
space.
(ii) The payoff functions ui(·) are continuous, and for every x−i ∈ X−i, the mapping
xi 7→ ui(xi, x−i) is concave.
(iii) The belief correspondences Ci are continuous.2

(iv) For all x, t ∈ X, the following inequality holds:

Ui(x) = inf
p∈Ci(x)

∫
X−i

ui(xi, y−i) dp(y−i) ≤ inf
p∈Ci(ti,x−i)

∫
X−i

ui(xi, y−i) dp(y−i).

Then, the game G admits at least one AAEps.

2A correspondence T from a topological space Z to another topological space W is said to be continuous
if it is both lower semicontinuous and upper semicontinuous; see Castaing and Valadier (1977) for further
details.

11



Condition Th.2(iv) expresses the idea that, given a status quo strategy profile x ∈ X,
player i always perceives a lower or equal payoff when evaluating x using the belief set Ci(x)
corresponding to the status quo, compared to the perceived payoff obtained by evaluating
the same strategy xi under the belief set Ci(ti, x−i) associated with the alternative strategy
profile (ti, x−i) resulting from a unilateral deviation by player i from the status quo.

Proof. We begin by introducing the following real-valued functions V and W , both defined
on X2:

V (t, x) =
n∑

i=1

Ui(ti, x−i)−
n∑

i=1

Ui(x), (1)

and

W (t, x) =
n∑

i=1

inf
q∈Ci(x)

∫
X−i

ui(ti, y−i) dq(y−i)−
n∑

i=1

Ui(x).

From condition Th.2(i), it follows immediately that:

∀ t, x ∈ X, V (t, x) ≤ W (t, x). (2)

Conditions Th.2(i-iii) imply that the requirements for applying Fan’s minimax inequality
are satisfied for the function W (t, x). Specifically, the mapping x 7→ W (t, x) is continuous3

by virtue of the Berge maximum principle, and the mapping t 7→ W (t, x) is concave.
Therefore, there exists a strategy profile x̄ ∈ X such that W (t, x̄) ≤ 0, for all t ∈ X. Using
inequality (2), it follows that: for all t ∈ X, V (t, x̄) ≤ 0.
Now, fix an arbitrary player i ∈ N , and for any ti ∈ Xi, set tj = x̄j, for all j ̸= i.
Substituting into the definition of V (t, x̄), we obtain: V (t, x̄) = Ui(ti, x̄−i) − Ui(x̄) ≤
0,∀ti ∈ Xi. This implies that x̄ is an AAEps.

Even though Theorem 2 is stated without explicitly assuming A1, one might wonder
whether condition Th.2(iii) is easily satisfied under the A1 setting. In particular, for
each i ∈ N , the mapping x 7→

∏
j ̸=i P(βj(x)) is not generally continuous. Consequently,

assuming the existence of a continuous set-valued selection for Ci may be a demanding
requirement. It is also worth noting that condition Th.2(iv) is always satisfied when Ci(·)
does not depend on xi, ie. Ci(x) = Ci(yi, x−i) for all x ∈ X and yi ∈ Xi. The following
example illustrates that Th.1(iv) can still hold even without imposing this restriction.

Example 3. Let N = {1, 2}, Xi = [−1, 1], for i ∈ N , and define the utility functions as
follows: u1(x1, x2) = x1 − x2 and u2(x1, x2) = min{x1, x2}. Assume that, for every x ∈ X,
the belief correspondences are given by Ci(x) = P(β−i(x)). It is straightforward to verify
that β2(x1, x2) = [x1, 1], which depends on x1. Consequently, C1(x1, x2) = P([x1, 1]) also
depends on x1. The modified utility for player 1 becomes:

U1(x1, x2) = inf
p∈P([x1,1])

∫
X2

u1(x1, y2) dp(y2) = x1 − 1.

3A detailed proof of the continuity of the modified utilities Ui, for all i ∈ N , is given in the proof of
Theorem 2 below.
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For any t1 ∈ X1, we similarly obtain:

inf
p∈C1(t1,x2)

∫
X2

u1(x1, y2) dp(y2) = inf
p∈P([t1,1])

∫
X2

u1(x1, y2) dp(y2) = x1 − 1.

Thus, Th.2(iv) is satisfied for U1. For U2, observe that: C2(x1, x2) = P(β1(x1, x2)) =
P({1}) = {δ1}, meaning C2(x1, x2) does not depend on x. Consequently, Th.2(iv) is
satisfied for U2 as well.

4 The mixed strategy case

In this section, each player i ∈ N adopts a mixed strategy, represented by a probability
measure µi ∈ P(Xi). To accommodate mixed strategies, we associate with each player
i a canonical mixed-extension utility function Vi, defined for every mixed strategy profile
µ = (µ1, . . . , µn) ∈

∏
i∈N P(Xi) by:

Vi(µ1, . . . , µn) =

∫
X

[
inf

p∈Ci(x)

∫
X−i

ui(xi, y−i) dp(y−i)

]
d⊗j∈N µj(x) =

∫
X

Ui(x) d⊗j∈N µj(x),

where the expression is assumed to be well-defined. The technical details ensuring the
well-posedness of Vi will be addressed later in this section.

Definition 2. An exogeneous ambiguity aversion mixed strategy equilibrium (AAEms)
for G is a strategy profile µ ∈

∏
i∈N P(Xi) such that: for all i ∈ N , for all µ′

i ∈ P(Xi),
Vi(µ

′
i, µ−i) ≤ Vi(µ).

Let Y be a compact topological space. We denote by ca(Y ) the space of countably additive
set functions defined on the Borel σ-algebra of Y , and by C(Y ) the space of continuous
real-valued functions on Y , endowed with the sup-norm-topology. More generally, unless
stated otherwise, all topological spaces considered are equipped with their respective Borel
σ-algebras generated by the prevailing topologies, and all product spaces are endowed with
the corresponding product σ-algebra.

Theorem 3. Assume that the following conditions are satisfied. For all i ∈ N :
(i) The strategy set Xi is a compact metric space.
(ii) The payoff function ui is continuous.
(iii) The belief correspondences Ci are continuous with closed, nonempty values.
(iv) The range spaces of probabilities are equipped with the weak∗ topologies σ(ca(X−i), C(X−i)),
for each i ∈ N .
Then, all the mixed extension payoff functions Vi are well-defined and continuous, and the
game G admits a AAEms.

Proof. Let us first endow the probability spaces containing players’ beliefs P(X−i), for
each i ∈ N , with their corresponding induced weak∗ topologies σ(ca(X−i), C(X−i)). It is
worth noting that these topologies are metrizable since the spaces C(X−i) are separable.
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Consequently, the spaces P(X−i), for all i ∈ N , are compact metric spaces. Under these
assumptions, consider the functional F : (xi, µ) 7→

∫
X−i

ui(xi, y−i) dµ(y−i) defined on Xi ×
P(X−i). We claim that F is continuous. To see this, let (xn

i )n∈N be a sequence in Xi

converging to xi, and let (µn)n∈N be a sequence in P(X−i) converging to µ in the weak∗-
topology. Then, for every n ∈ N,

|F (xn
i , µn)− F (xi, µ)| ≤

∣∣∣∣∫
X−i

ui(x
n
i , y−i) dµn(y−i)−

∫
X−i

ui(xi, y−i) dµn(y−i)

∣∣∣∣︸ ︷︷ ︸
(I)

+

∣∣∣∣∫
X−i

ui(xi, y−i) dµn(y−i)−
∫
X−i

ui(xi, y−i) dµ(y−i)

∣∣∣∣︸ ︷︷ ︸
(II)

.

It is clear that term (II) converges to zero by the weak∗ convergence of µn to µ. To show
that term (I) converges to zero, observe that the family H = {µn : n ∈ N} defines a family
of continuous linear functionals on C(X−i) endowed with the sup-norm. Since each µn is a
probability measure,

∀φ ∈ C(X−i),

∣∣∣∣∫
X−i

φdµn

∣∣∣∣ ≤ ∥φ∥C(X−i).

This implies thatH is uniformly bounded. By the Banach-Steinhaus theorem,H is equicon-
tinuous. Furthermore, ui(x

n
i , ·) converges to ui(xi, ·) uniformly over X−i, implying that:

lim
n→∞

sup
k∈N

∣∣∣∣∫
X−i

ui(x
n
i , y−i) dµk(y−i)−

∫
X−i

ui(xi, y−i) dµk(y−i)

∣∣∣∣ = 0.

Therefore, term (I) also converges to zero, establishing the continuity of F . Next, since Ci

is continuous with compact values in a metric space, Berge’s Maximum Principle ensures
that:

Ui(x) = inf
p∈Ci(x)

∫
X−i

ui(xi, y−i) dp(y−i) = inf
p∈Ci(x)

F (xi, p),

which implies that Ui is continuous. The integral of Ui over X defines a linear functional on
ca(X), which is continuous with respect to the weak∗-topology σ(ca(X), C(X)). Moreover,
the embedding (µ1, . . . , µn) 7→ µ1 ⊗ . . . ⊗ µn from

∏
i∈N ca(Xi) into ca(X) is continuous

for the weak∗ topologies.4 Thus, the extended utilities Vi, for all i ∈ N , are continuous
on

∏
i∈N ca(Xi) endowed with the product weak∗ topologies. Furthermore, for each fixed

µ−i, the mapping µi 7→ Vi(µi, µ−i) is linear. Finally, since the strategy spaces P(Xi), for
all i ∈ N , are convex, weak∗ compact subsets of locally convex spaces, the existence of a
AAEms follows from classical Nash equilibrium existence results.

4Indeed, functions in C(X) can be uniformly approximated by sequences of finite linear combinations
of functions belonging to

∏
i∈N C(Xi). As a consequence, the space

∏
i∈N C(Xi) is dense in C(X) (see,

Balder (1988), Lemma 2.6).
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5 Conclusion

In this paper, we introduced a novel equilibrium concept for games with ambiguity-averse
players. Unlike related approaches in the literature, our equilibrium treats ambiguity as
an exogenous feature derived from the structure of the game itself, while preserving the
core of strategic interaction among players. We have demonstrated that this equilibrium
exists under relatively weak conditions in the mixed-strategy setting. In contrast, existence
in pure strategies may require stronger assumptions due to the complex structure of the
modified utilities and belief correspondences.

Although not our primary objective, we also illustrated through several well-known finite
games that our framework offers a natural mechanism for refining and selecting desirable
Nash equilibria in the original game. This suggests that our equilibrium concept can
serve both as a tool for analyzing ambiguity and as a refinement device within strategic
environments.

The present work constitutes a first step toward a broader research agenda. We believe
that further investigation of the proposed equilibrium is both promising and necessary.
In particular, uncovering additional properties may reveal its potential for applications to
real-world strategic situations, which are inherently shaped by uncertainty and ambiguity.
On the theoretical side, several directions remain open, such as weakening the assumptions
underlying Theorems 1 and 2, or establishing sufficient conditions for the existence and
uniqueness of the AAE. These questions offer fertile ground for future research.

References

Bade, S., Ambiguous Act Equilibria, Games and Economic Behavior 71 (2011), 246-60.

Balder, E. J., Generalized Equilibrium Results for Games with Incomplete Information.
Mathematics of Operations Research 13 (1988), 265-76.

Bernheim, D., Rationalizable Strategic Behavior, Econometrica 52 (1984), 1007-28.

Castaing, C., and Valadier, M., Convex Analysis and Measurable Multifunctions, Lecture
Notes in Mathematics 580, Springer-Verlag Berlin Heidelberg 1977.

Dominiak, A., and Eichberger, J., Equilibrium under Ambiguity (EUA) for Belief Func-
tions, [https://www.wiwi.tu-dortmund.de/wiwi/de/forschung/kolloquien/vwk/VWL-
Kolloquium-2016-Eichberger.pdf].

Dow, J., and Werlang, S. R. C., Nash Equilibrium under Knightian Uncertainty: Breaking
Down Backward Induction, Journal of Economic Theory 64 (1994), 305-24.

Eichberger, J., and D. Kelsey, D., Optimism and Pessimism in Games, International Eco-
nomic Review 55 (2014), 483-505.

15



Eichberger, J., Kelsey, D., and Schipper, B.C., Ambiguity and Social Interaction, Oxford
Economic Papers 61 (2009), 355-79.

Ellsberg, D., Risk, Ambiguity and the Savage Axioms, Quarterly Journal of Economics 75
(1961), 643-69.

Gilboa, I., and Schmeidler, D., Maxmin Expected Utility with a Non-Unique Prior, Journal
of Mathematical Economics 18 (1989), 141-53.

He, W., and Yannelis, N.C., Equilibrium theory under ambiguity, The School of Eco-
nomics Discussion Paper Series 1307(2013), Economics, The University of Manchester,
[http://hummedia.manchester.ac.uk/schools/soss/economics/discussionpapers/EDP-
1307.pdf].

Hill, B. A non-Bayesian Theory of state-dependent Utility, Econometrica 87 (2019), 1341-
66.

Huyck, J.V., Battalio, R., and Beil, R., Tacit Coordination Games, strategic uncertainty
and coordination failure, American Economic Review 80 (1990), 234-48.

Kajii, A., and Ui, T., Incomplete information games with multiple priors, The Japanese
Economic Review 56 (2005), 332-51.

Karni, E., Schmeidler D., and Vind, K., On State Dependent Preferences and Subjective
Probabilities, Econometrica 51 (1983), 1021–31.

Klibanoff, P., Uncertainty, Decision, and Normal Form Games, Technical report, North-
western University, 1996.

Lo, K. C., Equilibrium in Beliefs under Uncertainty, Journal of Economic Theory 71 (1996),
443-84.

Luce, R. D., and Raiffa, H., Games and Decisions. Introduction and Critical Survey, Wiley,
New York 1957.

Marinacci, M., Ambiguous games, Games and Economic Behavior 31 (2000), 191-219.

16


