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Abstract

When society acknowledges the potential for individual priors to be

misspecified, it encounters a structured ambiguity in the process of

making collective decisions through aggregation. This paper high-

lights various principles that provide a means to overcome this struc-

tured ambiguity by leveraging the consensual core of individual pri-

ors. This is achieved through a sequential aggregation mechanism,

wherein the decision-making process is divided into multiple stages.

Aggregation is thus conducted progressively. We demonstrate that, in

comparison to conventional synchronized aggregation, this approach

significantly broadens the scope of feasible aggregations.
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1 Introduction

Society often faces the challenge of making complex economic decisions,

such as those related to environmental economic policy or government debt

levels. Studies related to these decisions often encounter difficulty in reach-

ing agreement. There are several reasons for this lack of consensus. Firstly,

these studies often employ different methodologies, leading to varying prob-

ability estimates. Secondly, due to the complexity of the situations, the

models used for evaluation may be misspecified (Hansen and Sargent (2022)).

As a result, standard approaches like expected utility theory, which relies

on belief aggregation methods (Gilboa, Samet and Schmeidler (2004)), and

cost-benefit analysis do not effectively evaluate the decisions to be made.

This underscores the need for alternative approaches that can address the

complexities and misspecification associated with these economic decisions.

To illustrate this point with a simple example, consider a city that needs

to propose new environmental standards for future constructions within its

jurisdiction. Suppose the best estimate for temperature variations indicates

that the average temperature increase in the city will not exceed two de-

grees. In this scenario, adopting standard green building practices would be

a reasonable decision. However, if the average temperature increase reaches

or exceeds five degrees, a more stringent set of standards would be appro-

priate. Therefore, the predicted outcomes differ significantly depending on

whether the chosen standard addresses a temperature increase of 2◦C or

5◦C. To make the best possible decision, policymakers need to consider the

entire range of potential outcomes by examining the distribution of tem-

perature changes to evaluate the robustness of the decision. Thus, in this

example, the final decision is heavily dependent on the evaluation of cli-

mate sensitivity.

However, due to the heterogeneity of climate models, statistical meth-

ods, and observed data used by scientists, the evaluation of climate sen-

sitivity is highly inconsistent (Meinshausen et al. (2009)). Since the dif-

ferent estimates are not independent from each other (Tebaldi and Knutti
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(2007)), "we cannot objectively single out a best study" (Millner, Dietz and

Heal (2013), p. 24). Furthermore, these models themselves have significant

flaws, and the possibility of misspecification cannot be dismissed.

Continuing with the example, assume there are four possible tempera-

ture changes: +1◦C, +2◦C, +5◦C, +10◦C. We also assume that there are two

models evaluating these possibilities. Model 1 provides the estimates p1 =

(0.1,0.2,0.5,0.1), while Model 2 gives the estimates p2 = (0.1,0.5,0.2,0.1). It

is important to note that both models agree on the probability assigned to

a 1◦C and a 10◦C temperature increase, each being 0.1. Therefore, the an-

alyst should adhere to this consensus, that is, π(1) = π(10) = 0.1. However,

the estimates for a 2◦C and a 5◦C temperature change differ significantly

between the two models, precluding a definitive judgment by the analyst.

At the same time, the analyst recognizes the significant limitations of the

models and acknowledges that both models carry a non-negligible possi-

bility of making incorrect evaluations. Based on this, the analyst retains

multiple probabilistic possibilities for 2◦ and 5◦, encompassing all proba-

bility extensions consistent with π(1) = π(10) = 0.1, namely, Pπ = {p : p(1) =

p(10) = 0.1}. This approach includes not only the information directly re-

flected by the models but also captures the missing information that the

models do not possess. Therefore, one approach proposed herein is the α-

maxmin expected utility theory (Gilboa and Schmeidler (1989); Ghirardato,

Maccheroni and Marinacci (2004); Gul and Pesendorfer (2015)). This ap-

proach involves considering a set of prior probabilities that includes all the

probability extensions based on the agreed probabilities.

To begin, it is necessary to clarify what we mean by ambiguity. Here,

it is assumed that each individual has their own statistical model based,

among other things, on a probability distribution, and society builds its own

model by aggregating these different individual models. However, individ-

ual probabilistic models are not necessarily consistent with each other and

can even vary considerably. Additionally, individuals may lack full con-

fidence in the probability distribution they use to represent their beliefs.

In reality, the process of model construction is inherently a simplification
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and approximation of the actual situation. Consequently, as Hansen (2014)

points out, the possibility of model misspecification can never be entirely

ruled out. Moreover, the model validation process often suffers from a lack

of sufficiently relevant data, complicating the accurate identification of the

model itself. This is precisely what Manski, Sanstad and DeCanio (2021)

refers to as partial identification, which explains why the corresponding un-

certainty is termed deep uncertainty or structured uncertainty. In this paper,

the ambiguity we are discussing is clearly of this nature, which is why we

refer to it as structured ambiguity.

Assume now that each individual model corresponds to the Expected

Utility (EU) framework. Consequently, the social framework has to manage

the structured ambiguity generated by the aggregation of these individual

EU models (see, Epstein and Zhang (2001)). In the context of α-maxmin

EU framework, society constructs its model by determining its set of prob-

abilities, choosing its attitude towards structured ambiguity, namely, the

value α, and ultimately its social utility. As this construction mechanism

proceeds by aggregation, it must satisfy certain probing constraints.

To ensure that social beliefs are robust to misspecification, we first iden-

tify a set of events approved by all individuals in the sense that they have

the same prior regarding those events, and we consider the probability dis-

tribution p over this set. Then, we introduce opinions, one called cautious
and the other bold, that must align with society’s ranking on lotteries de-

fined on approved events. The relationship between social preferences and

opinions is determined through two axioms, Unanimity and Independence.

So, while social preferences can be represented by an α-maxmin expected

utility function over opinions, it is shown that the set of social beliefs robust

to misspecification corresponds to the set of extensions of p to all events.

The new approach to aggregation we propose can be broken down into

several steps. The first step is to apply a Pareto condition à la Harsanyi link-

ing individual and social preferences. As the principle only applies to acts

defined as approved acts, i.e. lotteries on approved events, this ensures that

the social probabilities are collectively consistent, while the social utility
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function corresponds to the weighted average of individual utilities. Due

to its lack of confidence in individual beliefs, society completely ignores

individuals’ perceptions and evaluations of ambiguous events. Instead, it

regards approved events as an approximation and estimate of ambiguous

events. This illustrates the very principle of the aggregation mechanism we

propose, which is based on an objective uncertainty that is shared by all to

gradually introduce a subjective uncertainty through the influence of opin-

ions on social preferences. It is important to note that the derived social

preferences are actually incomplete. It turns out that these preferences can

be represented by an expected utility in the Bewley sense (Bewley (2002)),

where beliefs belong to a certain subset of probability expansions. Un-

doubtedly, the aggregation of these newly derived preferences, once again

applying a principle of unanimity, results in the set of probability expan-

sions associated with α-maximal social preferences comprising a subset of

all probability expansions.

With the exception of a few rare contributions (Pivato (2022)), theo-

ries of aggregation under uncertainty generally satisfy the assumption of

methodological individualism. In other words, social values are usually de-

termined by individual values (Harsanyi (1955); Gilboa, Samet and Schmei-

dler (2004); Billot and Qu (2021); Dietrich (2021)), and the range of social

beliefs is often bounded by the set of individual beliefs (Crès, Gilboa and

Vieille (2011); Alon and Gayer (2016); Qu (2017); Danan et al. (2016)). Un-

like these previous works, this article adheres solely to a principle of partial

individualism. It only uses probabilities for which individuals are collec-

tively consistent, while retaining the other event probabilities that incor-

porate divergent opinions. In situations of structured ambiguity, such as

environmental, fiscal, or medical issues, individual models often lack suf-

ficient theoretical and empirical evidence to be convincing and are there-

fore prone to judgment errors. The possibility of individual models be-

ing misspecified should encourage society to be more cautious in choos-

ing which model to use. Therefore, the main strength of this article is to

provide a novel and reasonable method for society to aggregate individ-
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ual preferences when the models employed by individuals are likely to be

misspecified. Recently, (Bommier et al., 2021) introduced the concept of

distribution-consensus, which entails unanimous agreement among individ-

uals on expected utility and a consensus regarding the distribution of out-

comes. It is worth noting that their framework differs from ours, and their

distribution averaging model is significantly distinct from our α-maxmin

model.

An important innovation of this article is the sequential aggregation

mechanism. Indeed, there don’t seem to be any other papers using such

a mechanism. Standard aggregation is synchronized, meaning it only in-

volves a single step. It is well-known that synchronized aggregation often

encounters difficulties that affect the aggregation result. For example, Mon-

gin (1995) and Mongin and Pivato (2020) highlight that unanimity in syn-

chronized aggregation can be spurious. On the other hand, in the case of

sequential aggregation, it is possible to decompose the problem into mul-

tiple steps and sequentially aggregate the parameters we need. Compared

to synchronized aggregation, sequential aggregation significantly increases

the possibilities of non-dictatorial aggregation. In practice, social decisions

often result from a process of repeated refinement. In this sense, sequential

aggregation provides a more accurate description of the actual process of

social decision-making.

This paper is organized as follows. Section 2 contains the framework

and aggregation result for the social utility function. Section 3 formally

outlines and investigates the sequential aggregation method and presents

the main result. Section 4 considers some extensions of this result. We

conclude in Section 5. All proofs are in the Appendix.

2 The Model

Let (S,Σ) denote a σ -measurable space, where S is a set of states of nature
and Σ is a σ -algebra of events. Let X a set of outcomes, which is assumed to

be a connected and compact metric space. A social act is a Σ-measurable

6



simple function f : S → X and F is the set of all social acts.1 An act f is

constant if there is x ∈ X such that f (s) = x, for all s ∈ S. Depending on the

context, we may abuse the notation and refer f (s) or x as a constant act.

Society is a set of individuals I = {1, . . . ,n}. Each individual i ∈ I has

preferences over F × F , that is a binary relation ≿i⊂ F × F . Social prefer-

ences are denoted by ≿⊂ F × F . A function V : F → R represents prefer-

ences ≿ on F if, for all f ,g ∈ F , f ≿ g if and only if V (f ) ≥ V (g).

Definition 1. A function V : F → R is a subjective expected utility function

if there exists a unique probability measure π on Σ, and a utility function u

on X, such that, for f ∈ F :

(1) V (f ) =
∫
S
u(f )dπ.

Assumption 1 — (SEU individuals). For all i ∈ I , individual preferences

≿i are represented by a subjective expected utility (SEU). This repre-

sentation corresponds to the unique pair (ui ,πi) as in (1) (up to the

affine transformation of ui), where ui is continuous and non-constant

and πi is countably additive and nonatomic.

Assumption 1 is based on Savage’s postulates, which mandate that all

individual preferences be represented by a SEU. However, the model does

not impose that social preferences admit a SEU representation in the pres-

ence of heterogeneous individual beliefs. This sets it apart from Gilboa,

Samet and Schmeidler (2004) and Mongin (1995).

Harsanyi (1955) assumes that under objective uncertainty, when all in-

dividuals share the same beliefs about all events, social preferences are rep-

resented by an expected utility function. However, conflicts may arise when

individual beliefs differ, and in such cases, society must compromise with

these heterogeneous beliefs. Therefore, as noted by Diamond (1967), it is

neither intuitive nor reasonable to determine the form of preference repre-

1The topology of pointwise convergence on F is defined as the relative topology with re-
spect to the product topology on XS .

7



sentation before establishing the rule for aggregating beliefs. For this rea-

son, it is more appropriate to assume that social preferences admit a SEU

representation for approved acts, while remaining representation agnostic
for other acts.

Definition 2. An event A is approved if πi(A) = πj(A), for all i, j ∈ I .

Let A denote the collection of all approved events, such that an event

A belongs to A if all individuals agree on its probability. An act f is cate-

gorized as a lottery, what we refer to as an approved act in the introduction,

if every measurable subset of outcomes Y is approved, that is f −1(Y ) ∈ A ,

for all Y ⊂ X. We use L to symbolize the set of lotteries. If all individuals

agree on the probability of each event, then A = Σ. However, if there is a

belief heterogeneity, then the set of approved events is only a subset of Σ,

and in general, does not form an algebra. Recall that a λ-system Λ ⊆ 2Ω is a

collection of subsets such that:

(i) Ω ∈Λ,

(ii) if E ∈Λ, then Ec ∈Λ,

(iii) for any countable collection of disjoint events Ek ∈Λ,
⋃
k Ek ∈Λ.

In fact, the collection of all the approved events consists a λ-system.2

Lemma 1. The collection A of approved events is a λ-system.

We say that π : A → [0,1] is a probability measure on approved events

if:

(i) π(∅) = 0 ≤ π(A) ≤ π(S) = 1, for every A ∈A , and

(ii) π(
⋃
kAk) =

∑
kπ(Ak), for any countable collection of disjoint events

Ak ∈A .

It is worth noting that any probability measure defined on Σ and re-

stricted to A is also a probability measure on A . Therefore, the prob-

ability measure π, which is defined on the approved events and satisfies

2Border, Ghirardato and Segal (2008) has demonstrated that the approved set A is also
a σ -algebra. Given that this observation does not impact any of our results, we have de-
cided to maintain our findings as originally presented.
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π(A) = πi(A), for all A ∈ A , all i ∈ I , can be considered as a probability

measure on A .

Definition 3. Given a collection of approved events A , a function V : F →
R is a restricted SEU (RSEU) with respect to A if there exist a probability

measure π onA and a continuous and nonconstant utility function u on X,

such that, for f ∈ L:

(2) V (f ) =
∫
S
u(f )dπ.

Assumption 2 — (RSEU society). Social preferences ≿ are represented by

a RSEU V . This representation corresponds to the unique triplet (A ,π,u)

as in (2) (up to the affine transformation of u) where the function u

is continuous and non-constant. Additionally, we assume that V is

both monotonic3 and continuous (in the topology of pointwise con-

vergence).

Thus, according to Assumption 2, social preferences ≿must conform to

Savage’s postulates, which are confined to the set of lotteries, i.e. the set of

approved acts. For a detailed discussion of RSEU, we refer to Epstein and

Zhang (2001) and Kopylov (2007) for the formal characterization.

The first principle proposed in this paper is the Pareto principle, but it

exclusively applies to preferences concerning lotteries.

Harsanyi Pareto condition (HPC). For every lotteries f ,g ∈ L, if f ≿i g, for

all i ∈ I , then f ≿ g.

HPC states that if every individual favors the first lottery over the sec-

ond, then society would also prefer the first lottery. According to individual

beliefs, each lottery corresponds to an identical von Neumann-Morgenstern

lottery. As a result, HPC can be viewed as a natural extension of the objec-

tive uncertainty condition to the subjective uncertainty.

3V is monotonic if u(f (s)) ≥ u(g(s)), for all s ∈ S, implies V (f ) ≥ V (g).
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Definition 4. Given {(ui ,πi)}i∈I , a RSEU (A ,u,π) is collectively consistent
if A is the set of approved events with π(A) = πi(A), for all i ∈ I and all

A ∈A , and it is utilitarian if u is a convex combination of {ui}i∈I . Moreover,

a RSEU is said to be consistently utilitarian if it is both collectively consistent

and utilitarian.

The next result characterizes the relation between HPC and a consis-

tently utilitarian RSEU.

Theorem 1. HPC holds if and only if social preferences ≿ are represented by a
consistently utilitarian RSEU.

This theorem does not prescribe a particular form of representation for

all acts in general. Instead, it characterizes social utility as a convex com-

bination of individual utilities and social beliefs when they are based on

approved events. As HPC only pertains to social preferences for approved

acts, this result can be considered as an extension, albeit rather limited,

of Harsanyi’s aggregation theorem from objective uncertainty to subjective

uncertainty.

3 Social Opinions

Since all individuals share the same beliefs about each approved act, i.e.

each lottery, social preferences regarding lotteries based on HPC can be seen

as a consensus evaluation of these lotteries. It is important to note that so-

ciety only agrees on approved events and therefore does not pass judgment

on events with heterogeneous estimates.4 Social preferences restricted to

approved acts are unanimously accepted by all individuals. Consequently,

these preferences naturally serve as a reference for society when it seeks to

evaluate other acts that are not lotteries.

Formally, social preferences ≿ are said to match with preferences ≿∗ on F
if ≿ agrees with ≿∗ on lotteries, i.e. f ≿ g if and only if f ≿∗ g, for all f ,g ∈ L.

4For convenience, these events can be referred to as ambiguous.
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Thus, if social preferences ≿ match with ≿∗, then (A ,π,u) represents ≿∗

restricted toL. We say preferences are defining a social opinion if they match

with ≿ and if they admit a RSEU representation. Let Θ be a collection of

under-consideration social opinions. For any opinion θ ∈ Θ, ≿θ denotes the

corresponding social preferences for the opinion θ. The social opinions

have an identical ranking, concerning approved acts. However, they differ

not only in their estimates of socially ambiguous events but also in their

attitudes towards these events.

For instance, a consistent SEU is a social opinion. Given (A ,u,π), let

Pπ be the set of all the extensions of π on Σ. We say a social opinion θ is

probabilistic if there is p ∈ Pπ such that:

f ≿θ g⇔
∫
u(f )dp ≥

∫
u(g)dp.

In this case, we can write θ = p. In a similar manner, a social opinion can

be multiple prior-EU (MEU) in the sense of Gilboa and Schmeidler (1989).

Society faces several opinions that are both rational and mutually con-

tradictory. We argue here that society should respect the following two

principles if it intends to formalize its preferences.

Unanimity. For all acts f ,g ∈ F , if f ≿θ g, for all θ ∈Θ, then f ≿ g.

The principle of unanimity states that if all social opinions prefer act

f over act g, then society as a whole also prefers act f . This principle is

particularly compelling because the consensus among social opinions on

the ranking of outcomes prevents any spurious unanimity, as described by

Mongin (1995), from occurring (see the introduction of this paper for an

illustration of such spurious unanimity).

For x,y ∈ X and event A, a binary act, written xAy, describes an act such

that the outcome is x if event A is realized and y otherwise.

Independence. For all acts f ,g ∈ F , x,y ∈ X and A ∈ A , if for every θ ∈ Θ,

there exists zθ ∈ X such that f ∼θ zθ and g ∼θ zθAy, then f ∼ x implies

g ∼ xAy.
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Figure 1: Preference Aggregation Process

The principle of independence states that if, for all social opinions, an

act g is indifferent to a binary lottery, whose outcomes consist of the corre-

sponding certainty equivalent of f and y, then society also considers g to

be indifferent to the binary act whose outcomes are certainty equivalent of

f and y. It is worth emphasizing that this axiom is intuitive. In the context

where randomization is allowed, it simply states that if g is indifferent to a

mixture of f and constant y for all social opinions, then society will also be

indifferent. However, it is important to note that we are exclusively consid-

ering the Savage setting and excluding the possibility of a random device.

In this context, the axiom serves as a re-expression of the classic one into the

Savage setting. (Our proposed aggregation process is summarized above in

Figure 1. )

Note that in the case of probabilistic social opinions, i.e. when Θ = Pπ, it

becomes necessary to apply a probabilistic principle of unanimity of the fol-

lowing form: “for any f ,g ∈ F , if f ≿θ g, for any θ ∈ Pπ, then f ≿ g”. How-

ever, we can immediately see that this puts almost no restrictions on social

preferences, which limits the interest of the process we propose. Therefore,

it is natural to consider a subset of all the probabilistic social opinions.

3.1 Pole Opinions

In an environment and era where societies are constantly inundated with

information primarily disseminated through social media, it is increasingly

difficult for individuals to make independent decisions separate from the

expressed opinions. It is therefore both prudent and effective to focus on

the most polarized opinions, those based on an extreme apprehension of

the environment, which thus favor the consideration of the best and worst

possible scenarios. We distinguish two main opinions, one that we call cau-
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tious and the other bold.

Definition 5. For any act f ∈ F and x ∈ X, f ≻caut x iff there is a lottery

g ∈ L such that f (s) ≿ g(s), for all s and g ≻ x. The relation ≿caut is referred

to as a cautious social opinion.

Cautious social opinion is characterized by a cautious way of valuing

each option f .5 Here, the expected utility of an option f is achieved by a

sort of approximation-from-below-process such that it is equal to the high-
est expected utility associated to the f -dominated lotteries. As an illustra-

tion, let us consider the case of a comparison between an option f and a

constant act x. The cautious social opinion does not allow a direct compar-

ison of f with x. Instead, it proposes to make only an indirect comparison

through lotteries that are dominated by f . Since monotonicity immediately

implies that f is preferred to all lotteries that it dominates, it follows that,

if any dominated lottery is preferred to x, then, by transitivity, the option f

is also preferred to x.

Definition 6. For any act f ∈ F and x ∈ X, x ≻bold f iff there is a lottery

g ∈ L such that g(s) ≿ f (s), for all s and x ≻ g. The relation ≿bold is referred

to as a bold social opinion.

Similarly, a bold social opinion cannot directly compare option f with

constant act x. It also applies an indirect comparison. However, a bold opin-

ion uses the dominant lotteries to evaluate f in a reckless way this time. If

x is preferred to any dominant lottery, then x is also preferred to option f .

According to this view, the expected utility of an option is equal, through

an approximation-from-above-process, to the lowest expected utility asso-

ciated to the dominant lotteries.

Why should a society give special consideration to cautious and bold

opinions? First, both opinions respect the monotonicity and transitivity of

preferences, which ensures that they are indeed rational in the theoretical

5In fact, cautious opinion is similar to the conditions of Consistency and Caution in
Gilboa et al. (2010).
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sense. Second, these two opinions together determine the lower and up-

per bounds between which the utility of an option can vary. The cautious

opinion establishes the lower value and the bold opinion the upper value.

Taking these two opinions into account helps to avoid overestimating or

underestimating the utility of an option. Finally, and most importantly, the

difference between the two values of an option’s expected utility can serve

as a measure of the intensity of the conflict of opinion. Therefore, it can be

expected that society will seek to manipulate this gap in order to strategi-

cally use the extent of the conflict of opinion.

Let Pπ be the collection of all probability extensions of a probability π.

It is easy to see that, for the cautious opinion, if f ≻caut x, then the expected

utility of f is greater than the expected utility of x, for all extensions of π.

Therefore, we can also interpret the cautious opinion such that an option

f is preferred to a constant act x only if its expected utility is greater than

the expected utility of x, for every possible extension of π. Similarly, for the

bold opinion, if x ≻bold f , then the expected utility of f is smaller than the

expected utility of x, for every possible extension of π.

Given a subset P ⊆ Pπ of probability extensions of π, we can now define

the notion of generalized maxmin expected utility.

Definition 7. A function V : F → R is a generalized maxmin expected utility
(GMEU) if there exist a nonempty compact and convex set P of probabilities

on Σ, a utility function u on X and a monotonic function W : u(X)×u(X)→
R with V (x) =W

(
u(x),u(x)

)
, for all x ∈ X, such that:

(3) V (f ) =W (uf
P
,u
f
P

),

where

u
f
P
≡max

p∈P

∫
u(f )dp and u

f
P
≡min

p∈P

∫
u(f )dp.

Given (A ,u,π), a GMEU function V is a generalized Hurwicz expected utility
(GHEU) if P = Pπ.
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Note that the definition of a GMEU depends on polar expected utilities,

in the sense that the utility of an act f is determined only by its highest

possible expected utility uf
P

and its lowest possible expected utility uf
P

. A

particular occurrence of GMEU is the case of α-MEU utilities:6

Definition 8. A function V : F →R is a α-maxmin expected utility (α-MEU)

if there exist a nonempty compact and convex set P of probabilities on Σ

and a utility function u on X such that:

(4) V (f ) = αmax
p∈P

∫
u(f )dp+ (1−α)min

p∈P

∫
u(f )dp,

where α ∈ [0,1].

Given (A ,u,π), an α-MEU function V is a Hurwicz expected utility (HEU) if

P = Pπ. The α-MEU case includes standard MEU and maxmaxEU as special

cases where α = 0 and α = 1, respectively.

The following theorem shows that if society is only sensitive to cautious

and bold opinions, then the satisfaction of Unanimity is equivalent to the

existence of uniformly utilitarian GHEU social preferences.

Theorem 2. Suppose Θ = {caut,bold}. Unanimity holds if and only if social
preferences ≿ are represented by a consistently utilitarian GHEU.

A special case of Theorem 2 concerns a society that is sensitive to only

one opinion. For example, if social sensitivity were cautious, then social

preferences would be represented by a standard MEU.

Corollary 1. Social preferences are cautious, i.e. ≿=≿caut, iff they are repre-
sented by a consistently utilitarian MEU with P = Pπ. In the same way, social
preferences are bold, i.e. ≿=≿bold, iff they are represented by a consistently util-
itarian maxmaxEU with P = Pπ.

6An axiomatization result in the Anscombe-Aumann setting can be found in Kopylov
(2003).
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(This result follows immediately from the proof of Theorem 2. There-

fore, we omit the proof.) Corollary 1 shows that cautious and bold opinions

are based on the same underlying beliefs, which correspond to Pπ. In real-

ity, they only differ in their system of evaluating ambiguous acts, i.e. acts

other than lotteries. Unanimity requires society to consider only two opin-

ions when evaluating acts, but it does not specify a precise functional form

for expected utility. This gives society some flexibility in choosing the func-

tion that represents its preferences in a complex environment, and it allows

society to remain undecided about how it intends to make its decisions. To

derive a more concrete form of representation, such as α-MEU, Indepen-

dence is then necessary.

Thus, Theorem 3 below provides an axiomatic characterization of social

preferences of type HEU. When society respects both Unanimity and Inde-

pendence, then social preferences admit a representation of type α-MEU,

where social utility is defined as a convex combination of individual utili-

ties and social beliefs as any extension of the probability π.

Theorem 3. Suppose Θ = {caut,bold}. Unanimity and Independence hold if
and only if social preferences ≿ are represented by a consistently utilitarian HEU.

This result characterizes a society that constructs its preferences based

on a weighted average of cautious and bold opinions. The set of socially am-

biguous events coincides with those shared by the two opinions. Thus, so-

ciety considers that the evaluation of the likelihood of an ambiguous event

A should not consist of a single number, but rather an interval of numbers.

Roughly speaking, the lower and upper bounds of this interval are mea-

sured by the probability of the largest approved event contained in A and

the probability of the smallest approved event containing A, respectively.

It can be said that the social approach to evaluating the likelihood of so-

cially ambiguous events is, in a way, identical to the approach proposed by

Dempster-Shafer for dealing with individual uncertainty.

Given that ambiguity aversion is a widely observed phenomenon, one

may question the relevance of bold opinion in the construction of social
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preferences. It is entirely conceivable that cautious opinion is more com-

mon and that bold opinion is indeed rarer. However, in a collective decision-

making framework, as emphasized by Will Durant, it is often the case that

"a united minority acting against a divided majority" can have a significant

influence. Therefore, it is legitimate to consider that an HEU-type society

is descriptively more relevant than a society that would have been a priori

described as MEU-type.

3.2 Opinion Refinement

The cautious and bold opinions may appear too extreme. For an ambiguous

event, the cautious social estimate is actually lower than the lowest indi-

vidual cautious estimate. Similarly, the bold social estimate is higher than

the highest individual bold estimate. In this subsection, we aim to identify

a possible way to refine the cautious and bold opinions to avoid an overly

radical social estimate of these ambiguous events.

We know that the cautious and bold opinions draw from the same set of

social beliefs, which is the set of all probability extensions of π. Therefore,

it is likely that the two opinions share the same robust preference relation, as

defined below.

Definition 9. For f ,g,h ∈ F and A ∈ A , h is A-mixture of f ,g if, for all s,

h(s) ∼ f (s)Ag(s).

We denote A-mixture of f and g by f [A]g.

Remark. For any preferences ≿∗ on F matching with ≿, the A-mixture of f

and g with respect to ≿∗ is the same as the one with respect to ≿.

Definition 10. Given a social opinion θ ∈Θ and two acts f ,g ∈ F , f is said

to be robustly preferred to g, denoted f ⊵θ g, iff, for any h ∈ F :

f ⊵θ g⇐⇒ f [A]h ≿θ g[A]h for all A ∈A .
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An act f is robustly preferred to another act g if all event-mixtures of

f and g with another act h reproduce between them the same ranking. We

note that the social opinion ≿θ, for θ ∈ {caut,bold}, restricted to lotteries, i.e.

approved acts, is a robust preference. However, in general, ⊵θ is defined on

F and not intended to be restricted to lotteries only. For example, if one

option state-wisely dominates another option, it is obvious that the former

will be robustly preferred to the latter. Similarly, society robustly prefers f

to g, written f ⊵ g, if f [A]h ≿ g[A]h, for all h ∈ F and A ∈A . Since cautious

and bold opinions share the same beliefs, it is imperative to require that

if they both believe that one act is robustly preferable to another, so does

society:

Robust unanimity. If f ⊵θ g, for all θ ∈ {caut,bold}, then f ⊵ g.

What does robust unanimity imply? First, robust preferences are a priori

incomplete. Therefore, social robust preferences ⊵ are Bewley preferences:

there exists a subset P of Pπ such that one act is robustly preferred to an-

other if and only if the expected utility of the former is greater than that of

the latter, this for each probability in P. If society respects robust unanim-

ity, then social robust preferences can be interpreted as a reference point

for the refinement of social opinions.

Definition 11. A social opinion is pessimistic, i.e. θ = pessi, if f ⋭ x implies

x ≿pessi f .

A pessimistic opinion holds that a constant act x is always better than

any act f whenever f is not robustly preferred to x. In other words, when

there is an event A such that an A−mixture with x is better than the same

mixture with f , then the pessimistic opinion believes that x is a better act.

Definition 12. A social opinion is optimistic, i.e. θ = opti, if x ⋭ f implies

f ≿opti x

An optimistic opinion believes that any act f is better than a constant

act x if x is not robustly preferred to f . In other words, whenever there is
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Figure 2: Opinion Process

an event whose associated mixture with f is better than the same mixture

with x, then the optimistic opinion believes that f is a better act.

See Figure 2 above for the formation of pessimistic and optimistic opin-

ions.

We want to emphasize here that both pessimistic and optimistic opin-

ions depend on social robust preferences ⊵. Robust unanimity requires only

that ⊵ be Bewley-type preferences characterized by P ⊆ Pπ. Therefore, P

may as well contain all probability extensions of π or be a singleton. If

P = Pπ, then the pessimistic and optimistic opinions are absolutely identi-

cal to the cautious and bold opinions, respectively.7 If P is a singleton, then

the pessimistic and optimistic opinions coincide and constitute an opinion

that can be represented by a SEU, i.e. what we will call later a Bayesian
opinion.

In this process, society takes the initiative to influence social opinions.

If the heterogeneity of individual estimates of an ambiguous event is low

enough, society may agree to treat it as an approved event by assigning it

a number. As a result, social opinions will not conflict with respect to the

estimation of this event. Similarly, society can use the minimum and maxi-

mum individual probabilities to estimate each ambiguous event, which will

then lead to define P as the convex hull of the individual probabilities.

7This is why the pessimistic opinion is a refinement of the cautious opinion, just as the
optimistic opinion is a refinement of the bold opinion.
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The following theorem proposes a formal characterization of a GMEU,

which is a generalization of a GHEU. If society considers only pessimistic

and optimistic opinions, then Unanimity implies that society admits for its

preferences a consistently utilitarian GMEU representation.

Theorem 4. Suppose Θ = {pessi,opti}. Unanimity holds if and only if social
preferences ≿ are represented by a consistently utilitarian GMEU with P ⊆ Pπ.

Theorem 5 states that if, additionally, Independence is satisfied, then

society must have a consistently utilitarian α-MEU representation.

Theorem 5. Suppose Θ = {pessi,opti}. Unanimity and Independence are sat-
isfied if and only if social preferences ≿ are represented by a consistently utilitar-
ian α-MEU with P ⊆ Pπ.

Theorem 5 is a general result, which includes many important results as

special cases. If P is a singleton, all being a convex combination of individ-

ual beliefs with α = 0, then it coincides with the theorem in Gilboa, Samet

and Schmeidler (2004). Similarly, if P is a set consisting of all convex com-

binations of individual beliefs with α = 0, then it coincides with the result

of Alon and Gayer (2016).

4 Social Opinions and Contamination

In the previous sections, we only considered social opinions that were based

on lotteries or approved acts. However, in some situations, individual be-

liefs or a weighted average of individual beliefs define undoubtedly a rea-

sonable social opinion. For example, society may be particularly interested

in the opinion of a renowned expert. In this case, society may wish to in-

clude this expert opinion in the set of possible social opinions.

Definition 13. A social opinion is Bayesian, i.e. θ = B, if ≿B admits a SEU

representation and satisfies HPC.

To be a social opinion, Bayesian preferences ≿B must first match with

social preferences ≿ regarding lotteries. Moreover, the Bayesian opinion is
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also associated to a probability measure pB on Σ, the algebra of possible

events. Since ≿B satisfies HPC, we can apply the theorem of Gilboa, Samet

and Schmeidler (2004), which immediately implies that Bayesian beliefs pB
are defined as a convex combination of individual beliefs.

Proposition 1 (Gilboa, Samet and Schmeidler (2004)). If a social opinion is
Bayesian, then pB on Σ is a convex combination of individual beliefs {πi}ni=1.

Therefore, a Bayesian social opinion is also a probabilistic social opinion,

i.e. pB ∈ Pπ. However, not all probabilistic social opinions are necessarily

Bayesian. We now aim to consider social opinions more holistically rather

than separately. According to the principles mentioned above, two sharp

opinions, such as cautious and bold opinions, can together form a moderate

social opinion. As Theorem 3 demonstrates, a moderate opinion can be

represented by a consistent utilitarian HEU.

Definition 14. A social opinion is moderate, θ = m, if ≿m admits a consis-

tently utilitarian HEU representation.

Let’s introduce now the notion of contamination when applied to a MEU.

Definition 15. Given (A ,u,π), a function V : F → R is a contamination
maxmin expected utility (cMEU) if there exist a probability measure p on

Σ, a nonempty compact and convex set P of probabilities on Σ and a utility

function u on X such that:

(5) V (f ) = ϵ
∫
u(f )dp+γmax

q∈P

∫
u(f )dq+ (1− ϵ −γ)min

q∈P

∫
u(f )dq,

where ϵ,γ ∈ [0,1] and ϵ+γ ≤ 1.

Theorem 6 characterizes cMEU social preferences by satisfying Unanim-

ity and Independence applied to both Bayesian and moderate social opin-

ions.

Theorem 6. Suppose Θ = {B,m}. Unanimity and Independence hold if and
only if social preferences ≿ are represented by a consistently utilitarian cMEU
with P = Pπ and p = pB.
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Similarly, we could consider another aggregate opinion, called the neu-
tral social opinion, which would aggregate the pessimistic and optimistic

opinions in the same way that the Bayesian opinion aggregates the cautious

and bold opinions. Then, by using Unanimity and Independence with re-

spect to Bayesian and neutral opinions, we could characterize a consistently
moderate expected utility using a smaller set of social beliefs, that is, P ⊂ Pπ.

It should be noted that our analysis so far focuses solely on a binary

opposition of social opinions. What would happen if we expanded the set

of social opinions to include all the opinions we discussed earlier, not just

in pairs of antagonistic opinions? As observed by Crès, Gilboa and Vieille

(2011) and Qu (2017), in the case of multiple opinions, a stronger axiom

than Unanimity and Independence would be needed to characterize the

representation.

In Theorem 6, we implicitly assume that opinions are aggregated se-

quentially. We first aggregate cautious and bold opinions into a moderate

opinion. Next, we aggregate moderate and Bayesian opinions into cMEU

social preferences. However, the order of opinion aggregation does not af-

fect the representation of social preferences. At each step of this sequential

aggregation, the binary opposition of the opinions leads to the formation of

a new opinion that can be seen as a kind of linear average of the two antag-

onistic opinions. Therefore, as long as the aggregated opinions stem from a

binary opposition, the additive form can be maintained.

5 Conclusion

Analyzing the conditions for collective decision-making presents a formidable

challenge. Economists have developed numerous models aimed at assisting

social planners in making more efficient choices by thoroughly examining

the practical problems they encounter. Decision-makers, however, often

face a dual complexity: the intricacy of the issues they must tackle, such as

analyzing global warming, and the complexity of the economic models re-

quired to effectively represent their preferences and available options. This
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dual complexity engenders significant structured ambiguity. The primary

consequence of this structured ambiguity is that, despite the existence of

various models, none can be entirely free from the risk of misspecification.

In light of the risk of model misspecification, the foundational princi-

ples upon which traditional social choice theory has long depended—namely,

methodological individualism and the Pareto principle—are significantly

challenged. Methodological individualism posits that social decision-making

should rely solely on the preferences of each individual in society. However,

given the risk of model misspecification, it becomes apparent that individ-

ual models may harbor errors and potential inaccuracies. Consequently, re-

lying solely on individual preferences to shape social preferences becomes

problematic and, indeed, unsuitable.

The unanimity of potentially erroneous individual preferences does not

constitute a convincing criterion. Blindly adhering to such unanimity in-

deed lacks a rational foundation. Therefore, in this article, we contend that

strict adherence to the individualistic principle and the Pareto principle is

unnecessary once the risk of model misspecification is acknowledged. In-

stead, we propose an aggregation process based on a principle of partial
individualism, which is less restrictive than standard methodological indi-

vidualism.

Our findings suggest that a model of social belief formation centered

around approved individual beliefs offers a promising approach to devel-

oping and addressing how society can make decisions in the presence of

misspecified individual models.
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A Appendix — Preliminaries and Proof of Lemma 1

Let B0(Σ) is the vector space generated by the indicator functions of the

elements of Σ, endowed with the supnorm. We denote by ba(Σ) the set of

all bounded, finitely additive set functions on Σ, and by ∆(Σ) the set of all

probabilities on Σ. We know that ba(Σ), endowed with the total variation

norm, is isometrically isomorphic to the norm dual of B0(Σ). Therefore,

the weak topology, w∗, of ba(Σ) coincides with the eventwise convergence

topology. Given a nonsingleton interval K in the real line, B0(Σ,K) is the set

of the functions in B0(Σ) taking values in K .

We recall that a binary relation ≿ on B0(Σ,K) is:

• preordered if it is reflexive and transitive;

• continuous if ϕn ≿ φn, for all n ∈N, ϕn→ ϕ and φn→ φ imply ϕ ≿ φ;

• Archimedean if the sets {λ ∈ [0,1] : λϕ + (1 − λ)φ ⪰ η} and {λ ∈ [0,1] :

η ≿ λϕ + (1−λ)φ} are closed in [0,1], for all ϕ,φ,η ∈ B0(Σ,K);

• affine if, for all ϕ,φ,η ∈ B0(Σ,K) and all α ∈ (0,1), ϕ ≿ φ iff αϕ + (1 −
α)η ≿ αφ+ (1−α)η;

• monotonic if ϕ ≥ φ implies ϕ ≿ φ;

• nontrivial if there exists ϕ,φ,η ∈ B0(Σ,K) such that ϕ ≿ φ but not φ ≿

ϕ.

Lemma A1. A binary relation ≿ is a nontrivial, continuous, affine, and mono-
tonic preorder on B0(Σ,K) iff there exists a nonempty subset P of ∆(Σ) such
that:

(6) ϕ ≿ φ⇐⇒
∫
ϕdp ≥

∫
φdp for all p ∈ P.

Moreover, cow
∗
(P) is the unique weak-closed and convex subset of ∆(Σ) repre-

senting ≿ in the sense of above expression.

Given a functional I : B0(Σ)→R, I is said to be:
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• monotonic if I(ϕ) ≥ I(φ), for all ϕ,φ ∈ B0(Σ) such that ϕ ≥ φ;

• constant additive if I(ϕ + a) = I(ϕ) + a, for all ϕ ∈ B0(Σ) and a ∈R;

• positively homogeneous if I(aϕ) = aI(ϕ), for all ϕ ∈ B0(Σ) and a ≥ 0;

• constant linear if it is constant additive and positively homogeneous.

A probability measure π is convex-ranged if, for every 0 < r < 1 and

every A ∈ A , there is a subset B ⊂ A with B ∈ A such that π(B) = rπ(A).

Then a countably additive non-atomic measure is convex-ranged. Define

now a function µ : Σ→ [0,1] such that, for any E ∈ Σ : µ(E) = sup{π(A) : A ⊂
E and E ∈ A }. Since π is countably additive, it is straightforward to show

that the supremum can be reached. Call A ∈ A the core of E if A ⊆ E and

π(A) = µ(E) with A unique for a set of zero measure.

Let A ∈ A , M = {1, . . . ,m} and {Bi}i∈M be a finite partition of A. Let M
be the set of all nonempty subsets of M and define, for J ∈ M, M(J) as

{K ∈M : K ⊂ J}. For BJ = ∪j∈JBj , let CJ be the core of BJ . Note that CM = A.

The unanimous split {ÊJ }J∈M ⊂A of {Bi}i∈M is inductively defined as follows:

(1) for all i ∈M, Ê{i} = C{i}, and (2) for all J such that |J | > 1:

ÊJ := CJ \
( ⋃
K∈M(J),K,J

ÊK
)
.

Note that {ÊJ }J∈M is a unanimous partition of A such that
⋃
K∈M(J) Ê

J ⊂ BJ ,
for all J ∈ M, and µ(AJ ) = π(CJ ) =

∑
K∈M(J)µ(ÊK ). Moreover, for every sim-

ple act f ∈ F with range {x1, . . . ,xm}, let {ÊJ (f )} be the ideal split of {f −1(xi)}.

Lemma A2. Let f ∈ F with range {x1, . . . ,xm}. Then, (f∗, f ∗) ∈ F 2 such that
(f∗(s), f ∗(s)) =

(
argxi mini∈J u(xi),argxi maxi∈J u(xi)

)
, for s ∈ ÊJ (f ), is an enve-

lope of f .

Lemmas A1-2 are standard. Proofs are then omitted.

Lemma 1. The collection A of approved events is a λ-system.
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Proof of Lemma 1. The two first conditions of the definition of a λ-system

are obviously satisfied. We only show the condition (iii) holds. Suppose a

countable sequence of disjoint events An ∈ A . Since A is a subset of the

σ -algebra Σ, it is clear that the union of the events A =
⋃
nAn belongs to Σ.

By σ -additivity of every πi , we have πi(A) =
∑
nπi(An). For every An and

i, j, πi(An) = πj(An). Hence, if πi(A) = πj(A), for every i, j, it implies that

A ∈A .

B Appendix — Proof of Theorem 1

Theorem 1. HPC holds if and only if social preferences ≿ are represented by a
consistently utilitarian RSEU.

The proof of the necessity part is straightforward. We only demonstrate

the sufficiency one.

Proof of Theorem 1. Assume HPC holds. We first show that, for all A ∈A , if

πi(A) = p ∈ [0,1], for all i, then π(A) = p, where π(.) represents social beliefs.

Let pk = 1
2k

, where k ∈ N. Take A ∈ A such that πi(A) = pk, for all i.

We prove now, by induction, that π(A) = pk. If k = 1, then πi(A) = 1
2 and

A ∈A . We claim that π(A) = 1
2 . Suppose it is wrong, and wlog (without loss

of generality) assume that π(A) > 1
2 . Therefore, there exist x,y ∈ X such that

xAy ≻ xAcy. However, for all i, xAy ∼i xAcy, which, by HPC, implies: xAy ∼
xAcy, i.e. a contradiction. A similar argument works for the case where

π(A) < 1
2 . Hence, πi(A) = 1

2 , for all i, implies that π(A) = 1
2 . Now, suppose

that πi(A) = 1
2k

, for all i, implies that π(A) = 1
2k

. Assume that πi(A) = 1
2k+1 , for

all i. We then want to show that π(A) = 1
2k+1 . Suppose it is wrong and wlog

assume that π(A) > 1
2k+1 . By Lyapunov Convexity Theorem (See (Artstein,

1990) for a formal proof), there exists a subset B ⊂ Ac such that πi(B) = 1
2k+1 ,

for all i. So, B ∈A and A∩B = ∅ imply that A∪B ∈A . Since πi(A∪B) = 1
2k

,

for all i, by assumption, we have π(A ∪ B) = 1
2k

, which means π(B) < 1
2k+1 .

Similarly, there exists a subset C ⊂ (A∪B)c s.t. πi(C) = 1
2k+1 , for all i. Hence,

πi(A ∪ C) = 1
2k

= πi(B ∪ C), for all i, which implies that π(A ∪ C) = 1
2k

=
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π(B ∪ C). However, the first equality means that π(C) < 1
2k+1 , while the

second equality means that π(C) > 1
2k+1 , that is a contradiction. The same

argument works for the case where π(A) < 1
2k+1 .

Now, first, take an arbitrary rational number p ∈ (0,1). Then p admits a

finite dyadic expansion:

p =
m∑
k=1

xk
2k
,

where xk ∈ {0,1}. Take A ∈A s.t. π(A) = p, for all i. Therefore, there exists a

partition {A1, . . . ,Am} of A s.t. πi(Ak) = xk
2k

, for all i and k = 1, . . . ,m. Thanks

to the above analysis, we have π(Ak) = xk
2k

, for all k = 1, . . . ,m. It is immediate

to see that π(A) = p. Second, take an arbitrary irrational number p ∈ (0,1)

and A s.t. πi(A) = p, for all i. Suppose π(A) , p and assume π(A) > p. There

exists a rational number q s.t. π(A) > q > p. We can find an event B s.t. A ⊂ B
and πi(B) = q, for all i. This requires that π(B) = q < π(A), which contradicts

the fact that A ⊂ B implies π(A) ≤ π(B). A similar argument works for the

case where π(A) < p. Hence, finally, π(A) = p.

We show now that the social utility u is a convex combination of in-

dividual utilities. Note that, for any nonnegative numbers p1, . . . ,pm s.t.∑m
k=1pk = 1, there exists a partition {Ak}mk=1 of S s.t. π(Ak) = πi(Ak) = pk,

for all i and k. Therefore, for any vNM lottery L defined over X, we can

construct an act f ∈ L s.t. the lottery L corresponds to the distribution on

X generated by f . Conversely, any finitely valued act f ∈ L defines a distri-

bution over X, which is a vNM lottery. In restricting preferences over L, we

can apply Harsanyi Theorem to conclude that u is a convex combination of

{ui}ni=1.

C Appendix — Proof of Theorem 2

Several notions and intermediate results are necessary.

A set function ν : Σ→ [0,1] is a capacity if ν(∅) = 0, ν(S) = 1 and A ⊆ B
implies ν(A) ≤ ν(B). Given π onA , we define set functions µ∗,µ∗ : Σ→ [0,1]
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by: for A ∈ Σ,

(7) µ∗(A) = sup
B⊂A
B∈A

{π(B)} and µ∗(A) = inf
A⊂B
B∈A

{π(B)}.

Lemma C1. µ∗ and µ∗ are capacities on Σ .

We omit the proof since it is straightforward.

Recall now the notion of Choquet integration. For any capacity ν and

integrand a : S→R, the Choquet integral is defined by:

c

∫
adν =

∫ ∞
0
ν({s : a(s) ≥ t})dt +

∫ 0

−∞
[ν({s : a(s) ≥ t})− 1]dt.

Therefore, a function V : F → R is said to be a Choquet expected utility
(CEU) function if there exist a function u on X and a capacity µ on Σ s.t.,

for f ∈ F :

V (f ) = c
∫
u(f )dµ.

Lemma C2. The cautious social opinion≿caut is represented by a function Vcaut :

F → R, where, for all f ∈ F : Vcaut(f ) = minp∈Pπ u(f )dp. Similarly, the bold
social opinion ≿bold is represented by Vbold : F → R, where, for all f ∈ F :
Vbold(f ) = maxp∈Pπ u(f )dp.

Proof of Lemma C2. We will prove the result for Vcaut. The proof for Vbold is

analogous and, therefore, omitted.

First, show that for f ∈ F :

Vcaut(f ) = sup
{∫

u(g)dπ : u(f ) ≥ u(g) and g ∈ L
}
.

By monotonicity, for all g ∈ L, if u(f ) ≥ u(g), then Vcaut(f ) ≥
∫
u(g)dπ.

Therefore, it is clear that Vcaut(f ) ≥ sup
{∫
u(g)dπ : u(f ) ≥ u(g) and g ∈ L

}
.

Now, suppose that Vcaut(f ) > sup
{∫
u(g)dπ : u(f ) ≥ u(g) and g ∈ L

}
. We want

now to derive a contradiction. Since f is a simple act, there exist x,y in

{x1, . . . ,xm}, which is the outcome set of the act f , s.t. u(x) ≥ u(z) ≥ u(y),
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for all z ∈ {x1, . . . ,xm}. Therefore, x ≿ f ≿ y. Since u(X) is convex, we know

there exists xf ∈ X s.t. xf ∼ f , which implies u(x) > sup{
∫
u(g)dπ : u(f ) ≥

u(g) and g ∈ L}. Again, by convexity of u(X), there is a y ∈ X such that:

u(x) > u(y) > sup{
∫
u(g)dπ : u(f ) ≥ u(g) and g ∈ L}. As a result, f ≿caut y

while there is no g ∈ L s.t. u(f ) ≥ u(g) and g ≻ y, which contradicts the

definition of the cautious social opinion. Therefore, for f ∈ F , Vcaut(f ) =

sup
{∫
u(g)dπ : u(f ) ≥ u(g) and g ∈ L

}
.

Second, we want to show that, for f ∈ F ,

c

∫
u(f )dµ = sup{

∫
u(g)dπ : u(f ) ≥ u(g) and g ∈ L}.

Notice that, according to Schmeidler (1989), CEU satisfies monotonicity,

which means, if u(f ) ≥ u(g), that c
∫
u(f )dµ ≥ c

∫
u(g)dµ. When g ∈ L, c

∫
u(g)dµ =∫

u(g)dπ. Therefore, we have: c
∫
u(f )dµ ≥ sup{

∫
u(g)dπ : u(f ) ≥ u(g) and g ∈

L}. Take an act f ∈ F . Wlog, we can write f = x1A1x2A2 · · ·xmAm, where

u(x1) > u(x2) > · · · > u(xm). So,

c

∫
u(f )dµ =

m−1∑
k=1

[u(xk)−u(xk+1)]µ(∪kj=1Aj) +u(xm).

Let ÊJ (f ) be the ideal split of {f −1(xi)}. Consider g ∈ L defined by, for all

s ∈ S, g(s) = argmini∈J u(xi) if s ∈ ÊJ (f ). We want to show that:∫
u(g)dπ = sup

{∫
u(g)dπ : u(f ) ≥ u(g) and g ∈ L

}
.

For 1 ≤ k ≤ m, we write ÊJ≤k(f ) :=
⋃
J {ÊJ (f ) : J ⊆ {1,2, . . . , k} and k ∈ J}. Since

x1 ≻ x2 ≻ . . . ≻ xm, we can rewrite g in the following way: for all s ∈ S,

g(s) = xk if s ∈ ÊJ≤k(f ). We know that, for every 1 ≤ k ≤ m,
∑k
j=1π

(
ÊJ≤j(f )

)
=
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π(C{1,...,k}), which implies π(ÊJ≤k(f )) = π(C{1,...,k})−π(C{1,...,k−1}). Therefore:

Vcaut(g) =
m∑
k=1

u(xk)π(ÊJ≤k(f ))

=
m∑
k=1

u(xk)[π(C1,...,k)−π(C1,...,k−1)]

=
m∑
k=1

u(xk)[µ∗(∪kj=1Aj)−µ∗(∪
k−1
j=1Aj)]

= c
∫
u(f )dµ.

Hence, there exists p∗ ∈ Pπ s.t. p∗(Ak) = µ∗(∪kj=1Aj) − µ∗(∪
k−1
j=1Aj). That

is, c
∫
u(f )dµ =

∫
u(f )dp∗ ≥ minp∈Pπ u(f )dp. However, u(f ) ≥ u(g) implies

that, for all p ∈ Pπ,
∫
u(f )dp ≥

∫
u(g)dp =

∫
u(g)dπ. So, minp∈Pπ u(f )dp ≥∫

u(g)dπ = c
∫
u(f )dµ. Hence, we have

∫
u(f )dµ = minp∈Pπ u(f )dp.

Recall now that uf
P
≡maxp∈P

∫
u(f )dp and uf

P
≡minp∈P

∫
u(f )dp.

Theorem 2. Suppose Θ = {caut,bold}. Unanimity holds if and only if social
preferences ≿ are represented by a consistently utilitarian GHEU.

Proof of Theorem 2. The proof of the necessity part is straightforward. We

only prove the sufficiency one. From previous analysis, we know that, for

f ,g ∈ F , f ≿caut g iff uf
Pπ
≥ ug

Pπ
and f ≿bold g iff uf

Pπ
≥ ug

Pπ
. Thus, Unanimity

implies f ≿ g, whenever uf
Pπ
≥ ug

Pπ
and uf

Pπ
≥ ug

Pπ
. Therefore, there exists

a monotonic function W : u(X)× u(X)→ R s.t. W (uf
Pπ
,u
f
Pπ

) = W (ug
Pπ
,u
g
Pπ

),

whenever uf
Pπ

= ug
Pπ

and uf
Pπ

= ug
Pπ

. Thus, for any act f , the associated pair

(uf
Pπ
,u
f
Pπ

) characterizes the indifference class with respect to f . Hence, W

is a representation of ≿ on F .
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D Appendix — Proof of Theorem 3

Theorem 3. Suppose Θ = {caut,bold}. Unanimity and Independence hold
if and only if social preferences ≿ are represented by a consistently utilitarian
HEU.

The necessity part is straightforward and, therefore, omitted. Then, we

just show the sufficiency part. The proof consists of demonstrating, step

by step, three intermediate lemmas, i.e. Lemma D1-3. Observe first that

{u(f ) : f ∈ F } = {φ ∈ B0(Σ) : φ = u(f ), for some f ∈ F } = B0(Σ,u(X)). Wlog,

assume that [−1,1] ⊂ u(X). Define I on B0(Σ,u(X)) a follows: for all f ∈
F , I(u(f )) = V (f ). Note that f ≿ g iff I(u(f )) ≥ I(u(g)), for all f ,g ∈ F .

Moreover, I(1) = 1.

Lemma D1. I is positively homogeneous.

Proof of Lemma D1. For ϕ ∈ B0(Σ,u(X)) and a ≥ 0, show that I(a ·ϕ) = aI(ϕ).

Let f ∈ F be an act s.t. I(ϕ) = V (f ). Let x0 ∈ X be defined by u(x0) = 0. By

continuity and monotonicity, there exists x ∈ X s.t. u(x) = V (f ). Consider

a ∈ (0,1). Thanks to the convexity of π, there exists a subset A ∈ A s.t.

π(A) = a. Let g ∈ F be defined as follows: for all s ∈ S, g(s) ∼ f (s)Ax0. Since

u(g(s)) = a · u(f (s)), for all s, we have: V (g) = I(aϕ). Furthermore, note that

f and g admit the same ideal splitting. Therefore, V ∗(g) = V ∗(f [A]x0) and

V∗(g) = V∗(f [A]x0), that is:

c

∫
u(g)dµ∗ = a · c

∫
u(f )dµ∗ and c

∫
u(g)dµ∗ = a · c

∫
u(f )dµ∗.

Hence, if f ∼∗ x∗ and f ∼∗ x∗, then g ∼∗ x∗Ax0 and g ∼∗ x∗Ax0. By Indepen-

dence, we have g ∼ xAx0, which means V (g) = a · u(x) = a · V (f ). Hence,

I(aϕ) = aI(ϕ), for a ∈ (0,1). If a = 0 or a = 1, the result holds trivially. If

a > 1, then 1
a I(a ·ϕ) = I(ϕ) according to the above argument. This ends the

proof.

It is now sufficient to extend I by homogeneity to all B0(Σ). Note that I

is monotone and positively homogeneous on B0(Σ).
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Lemma D2. I is constant additive.

Proof of Lemma D2. Let ϕ ∈ B0(Σ) and a ∈ R. We want to show I(ϕ + a ·1) =

I(ϕ) + a. Let f ∈ F be s.t. u(f ) = 2ϕ and x ∈ X be s.t. u(x) = 2a. Also,

by continuity and monotonicity, there is y ∈ X s.t. f ∼ y. By convexity of

π, take A ∈ A s.t. π(A) = 1
2 . Define act g ∈ F by for all s, g(s) ∼ f (s)Ax.

So, u(g(s)) = u(f (s))+u(x)
2 for all s, which implies u(g) = ϕ + a · 1. Since f and

g have identical ideal splitting, we must have g ∼∗ f [A]x and g ∼∗ f [A]x.

Therefore,

c

∫
u(g)dµ∗ =

1
2

[
c

∫
u(f )dµ∗ +u(x)

]
and c

∫
u(g)dµ∗ =

1
2

[
c

∫
u(f )dµ∗ +u(x)

]
.

Let y∗ ∼∗ f and y∗ ∼∗ f . Then, g ∼∗ y∗Ax and g ∼∗ y∗Ax. According to Inde-

pendence, we have g ∼ yAx. Therefore, I(ϕ+a·1) = 1
2(u(y)+u(x)) = ϕ+a.

Let B0(A ) denote the set of all real-valued A -measurable finite valued

functions. For ϕ ∈ B0(Σ), let

ϕ∗ = arg inf
φ∈B0(A )
φ≥ϕ

I(φ) and ϕ∗ = arg sup
φ∈B0(A )
ϕ≥φ

I(φ)

Note that, for f ∈ F , Vg(f ) = I(u(f )∗) and Vc(f ) = I(u(f )∗).

Lemma D3. Let I : B0(Σ)→R be a monotonic constant linear functional. Then,
there exists a unique α ∈ [0,1] such that, for all ϕ ∈ B0(Σ), I(ϕ) = αI(ϕ∗) + (1−
α)I(ϕ∗).

Proof of Lemma D3. By Theorem 2, we know that I(ϕ) =W (I(ϕ∗), I(ϕ∗)). Since

I is homogeneous and constant additive, we have, for α ∈ [0,1] and a ∈R:

W (αϕ∗,αϕ
∗) = αW (ϕ∗,ϕ

∗),

W (ϕ∗ + a ·1,ϕ∗ + a ·1) =W (ϕ∗,ϕ
∗) + a.

Note that I(ϕ − I(ϕ∗)) = W (I(ϕ∗) − I(ϕ∗), I(ϕ∗) − I(ϕ∗)) = W (0, I(ϕ∗) − I(ϕ∗)).
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Therefore:

W (I(ϕ∗), I(ϕ
∗)) =W (0, I(ϕ∗)− I(ϕ∗)) + I(ϕ∗)

=W (0,1)(I(ϕ∗)− I(ϕ∗)) + I(ϕ∗).

Let α = W (0,1). We have: I(ϕ) = αI(ϕ∗) + (1 − α)I(ϕ∗). Let also ϕ be s.t.

I(ϕ∗) = 0. Then, monotonicity implies that I(ϕ) = α > 0.

This ends the proof of Theorem 3.

E Appendix — Proof of Theorem 4 and 5

The proofs of Theorem 4 and 5 proceed in six steps, corresponding to six

lemmas, i.e. Lemma E1-6. Suppose Θ = {opti,pessi}. Lemma E1-3, which

do not assume Independence, are sufficient for the proof of Theorem 4.

Lemma 4-6, which assume Independence, are used to derive Theorem 5.

The necessity of both theorems are standard, we hence omit it.

Lemma E1. There exists a unique non-empty convex and compact set P ⊆ Pπ

of probabilities on Σ such that, for all f ,g ∈ F :

f ⊵ g⇐⇒
∫
u(f )dp ≥

∫
u(g)dp for all p ∈ P.

Proof of Lemma E1. By definition of the binary relation ⊵, we know, for all

h ∈ F and A ∈A , that:

f ⊵ g⇐⇒ I(u(f [A]h)) ≥ I(u(g[A]h))

⇐⇒ I(π(A)u(f ) + (1−π(A))u(h)) ≥ I(π(A)u(g) + (1−π(A))u(h)).

Since π has a convex range on A , for each λ ∈ [0,1], there exists A ∈ A
s.t. λ = π(A). Therefore, for all λ ∈ (0,1) and h ∈ F : f ⊵ g ⇐⇒ I(λu(f ) +

(1 − λ)u(h)) ≥ I(λu(g) + (1 − λ)u(h)). Now, we define ⪰ on B0(Σ,u(X)) as

follows: for all ϕ,φ ∈ B0(Σ,u(X)): ϕ ⪰ φ ⇐⇒ I(λϕ + (1 − λ)ψ) ≥ I(λφ +

(1 − λ)ψ),∀ψ ∈ B0(Σ,u(X)),λ ∈ (0,1]. Hence, it is straightforward that f ⊵
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g ⇔ u(f ) ⪰ u(g). Therefore, ⪰ is obviously a non-trivial, monotonic and

conic preorder on B0(Σ,u(X)). According to Bewley (2002) or Ghirardato,

Maccheroni and Marinacci (2004), we know that there exists a unique non-

empty convex and compact set P of probabilities on Σ s.t., for all ϕ,φ ∈
B0(Σ,u(X)): ϕ ⪰ φ ⇐⇒

∫
ϕdp ≥

∫
φdp, for all p ∈ P. We are left to show

that P ⊆ Pπ. Suppose it is wrong, i.e. there exists p ∈ P s.t. p < Pπ. Since

Pπ contains all extensions of π, p is not an extension of π. So there exists

A ∈A s.t. p(A) , π(A). Wlog, assume p(A) ≥ π(A). Then, for u(x) > u(y), we

have: u(x)P (A) +u(y)(1− P (A)) > u(x)π(A) +u(y)(1−π(A)). By continuity of

u, there exists z ∈ X such that: u(x)P (A) + u(y)(1− P (A)) > u(z) > u(x)π(A) +

u(y)(1 − π(A)). Therefore, z ⊵θ xAy, for all θ ∈ {opti,pessi} and z ⋭ xAy,

which contradicts Unanimity.

Lemma E2. For each ϕ ∈ B0(Σ,u(X)), we have:

min
p∈P

∫
ϕdp ≤ I(ϕ) ≤max

p∈P

∫
ϕdp.

Proof of Lemma E2. The proof is made by negation. First, suppose that there

exists ϕ ∈ B0(Σ,u(X)) s.t. I(ϕ) < minp∈P
∫
ϕdp. Let f ∈ F and x ∈ X be s.t.

u(f ) = ϕ and u(x) = φ. Suppose that f ∼ x. Then, I(ϕ) = I(φ). However, for

all λ ∈ (0,1] and ψ ∈ B0(Σ,u(X)), we have: I(λϕ+(1−λ)ψ) > I(λφ+(1−λ)ψ),

which implies that f ▷x. This contradicts the assumption whereby f ∼ x. A

similar argument works when I(ϕ) >maxp∈P
∫
ϕdp.

Lemma E3. The optimistic social opinion ≿opti is represented by Vopti s.t., for
f ∈ F , Vopti(f ) = maxp∈P

∫
u(f )dp. Moreover, the pessimistic social opinion

≿pessi is represented by Vpessi s.t., for f ∈ F , Vpessi(f ) = minp∈P
∫
u(f )dp.

Proof of Lemma E3. Prove the result for Vopti. The proof for Vpessi is anal-

ogous and, therefore, omitted. Note that ≿opti admits a restricted SEU

representation. So, by monotonicity and continuity, for each act f ∈ F ,

there exists xf ∈ X s.t. xf ∼opti f . If xf ⋭ f , then there exist g ∈ F and

A ∈ A s.t. f [A]g ≻ xf [A]g. By definition of ≿opti, we have f ≻opti xf .

Hence, xf ⊵ f . This implies that u(xf ) ≥
∫
u(f )dp, for all p ∈ P, which
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means u(xf ) ≥maxp∈P
∫
u(f )dp. Now, suppose that, for some f ∈ F , u(xf ) >

maxP ∈P
∫
u(f )dP . Take xmin be s.t. u(f (s)) ≥ u(xmin), for all s. Then, there

exists an event A ∈ A such that: u(xf ) > maxP ∈P
∫
u(f )dP = u(xf Axmin).

Let z ∈ X be s.t. z ∼ xf Axmin. We have: xf ≻opti z ⊵ f , which then implies

xf ≻opti f , that is a contradiction. In conclusion, Vopti(f ) = maxp∈P
∫
u(f )dp,

represents ≿opti.

Theorem 4. Suppose Θ = {pessi,opti}. Unanimity holds if and only if social
preferences ≿ are represented by a consistently utilitarian GMEU with P ⊆ Pπ.

Proof of Theorem 4. As seen previously, we know that, for f ,g ∈ F , f ≿pessi g

iff uf
P
≥ ug

P
and f ≿opti g iff uf

P
≥ ug

P
. Thus, Unanimity implies f ≿ g, when-

ever uf
P
≥ ug

P
and u

f
P
≥ ug

P
. Therefore, there exists a monotonic function

W : u(X) × u(X) → R s.t. W (uf
P
,u
f
P

) = W (ug
P
,u
g
P

), whenever uf
P

= u
g
P

and

u
f
P

= u
g
P

. Thus, for any act f , the associated pair (uf
P
,u
f
P

) characterizes the

indifference class with respect to f . Hence, W is a representation of ≿ on

F .

Theorem 5. Suppose Θ = {pessi,opti}. Unanimity and Independence hold
if and only if social preferences ≿ are represented by a consistently utilitarian
α-MEU with P ⊆ Pπ.

The proof is based on the three following lemmas:

Lemma E4. I is positively homogeneous.

Proof of Lemma E4. For ϕ ∈ B0(Σ,u(X)) and a ≥ 0, show that I(a ·ϕ) = aI(ϕ).

Let f ∈ F be s.t. I(ϕ) = V (f ) and let x0 ∈ X be s.t. u(x0) = 0. By continuity

and monotonicity, there exists x ∈ X s.t. u(x) = V (f ). Take now a ∈ (0,1).

Because of the convexity of π, there exists A ∈ A s.t. π(A) = a. Let an act

g ∈ F be defined by, for all s ∈ S, g(s) ∼ f (s)Ax0. Since u(g(s)) = a·u(f (s)), for

all s, we have V (g) = I(aϕ). Furthermore, note that Vopti and Vpessi satisfy

homogeneity and constant additivity. Therefore, Vopti(g) = aVopti(f ) and

Vpessi(g) = aVpessi(f ). Hence, let x∗,x∗ ∈ X be s.t. f ∼opti x
∗ and f ∼pessi x∗.

Then, g ∼opti x
∗Ax0 and g ∼pessi x∗Ax0. By Independence, we have g ∼ xAx0,
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which leads to V (g) = a · u(x) = a · V (f ). Thus, I(aϕ) = aI(ϕ), for a ∈ (0,1).

If a = 0 or a = 1, the result holds trivially. If a > 1, then 1
a I(a · ϕ) = I(ϕ)

according to the above argument. This ends the proof.

By homogeneity, we now extend I to all B0(Σ). Note that I is monotone

and positively homogeneous on B0(Σ).

Lemma E5. I is constant additive.

Proof of Lemma E5. Let ϕ ∈ B0(Σ) and a ∈ R. We want to show that I(ϕ + a ·
1) = I(ϕ) + a. Let f ∈ F be s.t. u(f ) = 2ϕ and x ∈ X be s.t. u(x) = 2a. In

addition, by continuity and monotonicity, there is y ∈ X s.t. f ∼ y. By the

convexity of π, take A ∈A s.t. π(A) = 1
2 . Define act g ∈ F by, for all s, g(s) ∼

f (s)Ax. Hence, u(g(s)) = u(f (s))+u(x)
2 , for all s, which implies u(g) = ϕ + a · 1.

Since Vopti and Vpessi are constant additive, we have Vopti(g) = 1
2Vopti(f ) + a

and Vpessi(g) = 1
2Vpessi(f ) + a. Let y∗, y∗ ∈ X be s.t. f ∼opti y

∗ and f ∼pessi y∗.

Then, g ∼opti y
∗Ax and g ∼pessi y∗Ax. By Independence, we have g ∼ yAx.

Therefore, I(ϕ + a ·1) = 1
2(u(y) +u(x)) = ϕ + a.

Lemma E6. There exists a unique α ∈ [0,1] s.t. I(ϕ) = αI ∗(ϕ) + (1−α)I∗(ϕ).

Proof of Lemma E6. Since I satisfies homogeneity and constant additivity,

according to Lemma E5, there exists a unique α ∈ [0,1] s.t. the above ex-

pression holds.

This ends the proof of Theorem 5.

F Appendix — Proof of Theorem 6

Theorem 6. Suppose Θ = {B,m}. Unanimity and Independence hold if and
only if social preferences ≿ are represented by a consistently utilitarian cMEU
with P = Pπ and p = pB.

Since the necessity part is straightforward, we only prove the sufficiency

one.
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Proof of Theorem 6. For all acts f ,g ∈ F , f ≿B g iff ufpB ≥ u
g
pB and f ≿m g iff

αu
f
Pπ

+(1−α)uf
Pπ
≥ αug

Pπ
+(1−α)ug

Pπ
. Unanimity implies the existence ofW :

u(X)×u(X)→R s.t.: W (ufpB ,αu
f
Pπ

+ (1−α)uf
Pπ

) ≥W (ugpB ,αu
g
Pπ

+ (1−α)ug
Pπ

),

whenever ufpB ≥ u
g
pB and αu

f
Pπ

+ (1 − α)uf
Pπ
≥ αug

Pπ
+ (1 − α)ug

Pπ
. Hence,

V (f ) = W (ufpB ,αu
f
Pπ

+ (1−α)uf
Pπ

) represents social preferences ≿. Since ≿B
and ≿m are constantly independent, a similar argument can be used as in

Lemmas E4 and E5 and Independence implies that I defined as I(u(f )) =

V (f ) is homogeneous and constantly additive. Therefore, Lemma D3 yields

the existence of a unique ε ∈ [0,1] s.t., for f ∈ F , V (f ) = εufpB +(1−ε)(αuf
Pπ

+

(1−α)uf
Pπ

).
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