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Abstract
We extend the Agreement Theorem of Aumann [1976] in two key di-

rections. First, we introduce Knightian uncertainty by modeling be-
liefs as sets of probability measures, allowing for ambiguity in agents’
posterior beliefs. Second, we relax the assumption that agents observe
perfectly each other’s posterior probabilities, replacing it with the as-
sumption that they perceive only certain properties of their posterior
probability sets. Our main result establishes that if agents share at
least one common prior, they can only have common knowledge that
their posterior probabilities satisfy a given property if these properties
are mutually compatible. Furthermore, we explore economic implica-
tions in the context of trade under asymmetric information, deriving
a No Trade result under ambiguity and highlighting conditions under

which trade may still occur.
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1 INTRODUCTION

Suppose Alice and Bob share a common prior belief about the weather later
in the day. They acquire potentially asymmetric information and update
their common prior to form posterior beliefs. Furthermore, suppose their
acquired information makes the exact values of their posterior beliefs for
rain common knowledge—that is, both know these values, both know that
they both know them, and so on ad infinitum. The seminal Agreement
Theorem of Aumann [1976] establishes that, under these conditions, Alice
and Bob’s posterior beliefs must necessarily coincide. In other words, they
cannot agree to disagree about the probability of rain.

This paper extends Aumann’s Agreement Theorem in two complemen-
tary directions. First, we incorporate Knightian uncertainty or ambiguity,
recognizing that agents may be unable or reluctant to assign precise proba-
bilities to uncertain events. Instead, their beliefs may be vague, a perspec-
tive rooted in the work of Ellsberg [1961]. Following Gilboa and Schmei-
dler [1989] and others, we model these vague beliefs as sets of probabilities.
Agents begin with an initial set of probabilities, update their beliefs upon
receiving information, and form a posterior set of probabilities.

The second extension relaxes the assumption that agents observe per-
fectly each other’s posterior beliefs. In reality, economic agents rarely have
direct access to the exact values of others’ beliefs; rather, they infer certain
properties of these beliefs, often in a vague or informal manner. For exam-
ple, Bob might infer that Alice’s probability of rain is low simply because
she is wearing sunglasses, while Alice might infer that Bob’s probability is
high because he is carrying an umbrella. Here, we assume that the prop-
erties of beliefs conveyed through information are exogenously given and
may be reflected in observable actions, such as clothing choices. Within
this framework, it is natural to represent a property of beliefs as a set of
probability measures.

Building on these extensions, we introduce a generalized version of Au-

mann’s Agreement Theorem. We replace the assumption of a common prior



with the weaker condition that agents’ prior sets of probabilities have a
nonempty intersection. Instead of assuming common knowledge of ex-
act posterior probability sets, we assume common knowledge that all of
an agent’s posterior probabilities satisfy a given property—meaning the
agent’s entire posterior set fully satisfies this property. Our main result es-
tablishes that agreement requires these properties to be mutually compat-
ible. Hence, we obtain a weak form of agreement where posterior beliefs
do not necessarily coincide, but their commonly known properties must
nonetheless be compatible. We also derive a corollary showing that our
generalized Agreement Theorem holds at every state of the world when ap-
propriate properties are identified. However, our result applies only to spe-
cific properties of posterior sets, raising the question of whether it can be
extended to broader classes of properties. To explore this, we introduce the
notion of partial satisfaction, where only some posteriors—not necessarily
all—satisfy a given property. In this direction, we establish two further re-
sults.

To illustrate the significance of our main result and its form of weak
agreement, we apply them to a trade setting inspired by Milgrom and Stokey
[1982]. The analysis crucially depends on the way agents react to the ambi-
guity they perceive, and we are lead to consider several decision-theoretic
models. In some cases, the logic of weak agreement remains strong enough
to preclude trade. But, in other cases, simple examples show that weak
agreement remains compatible with trade.

The remainder of this paper is structured as follows. We begin by intro-
ducing the framework and notation, defining prior and posterior probabili-
ties as well as the notion of a property. Next, we present our main result and
discuss an initial set of applications. We then explore potential extensions,
including alternative properties of probability sets and non-partitional in-
formation structures. Finally, we focus on applying our result to trade. All
proofs are collected in the Appendix.



2 FRAMEWORK

2.1 General

Let () be a finite state space, and let S be a finite set of individuals. Each
agent i € S is associated with a partition m; of (). For every w € (), let
7t;(w) denote the unique cell of 7t; containing w. As usual, 7t; represents the
information partition of agent 7, meaning that at state w, agent i does not
know the precise state but only that it belongs to 7;(w).

A probability measure on () is a function p mapping the power set of Q
to the set of nonnegative real numbers, satisfying p((Q) =1 and p(EUF) =
p(E) + p(F), for all disjoint subsets E,F C (). Let P(C)) denote the set of all
such probability measures. For each i € S, we assume a closed and convex
subset Q; C P(Q)), representing agent i’s prior beliefs (or simply, i’s prior set).
For any E C Q, define Q;(E) = {gq;(E) | q; € Q;} as the set of probabilities
assigned to E by measures in Q;.

We assume throughout the paper that a prior set of probabilities is up-
dated according to the rule known as Full Bayes. (See Section 6 for alter-
native approaches.) To ensure such form of updating is well-defined, we
assume g;[7;(w)] > 0, for all i € S, g; € Q;, and w € Q. Under this as-
sumption, the Bayesian update of q; conditional on 7;(w) is given by the
probability measure g;(- | 7;(w)), defined, for all E C Q, as: g;(E|n;(w)) =
q;(1t;(w) N E)/g;(1t;(w)). We denote Q?i(w) = Q;[- | m;(w)] as the set of agent
i’s posterior beliefs at state w (or simply, i’s posterior set at w). Thus, each
agent i starts with prior beliefs Q; and, upon acquiring information at state

w, updates Q; to Q?i(a)) according to Full Bayes.

2.2 Knowledge

Following Aumann [1976], we define, for each i € S, a mapping K; from
the power set of () to itself by setting, for every event E C (): K;(E) = {w €
Q | j(w) C E}. The set K;(E) consists of all states where agent i knows that

event E holds. Thus, K;(E) is itself an event, interpreted as “agent i knows



E”.

Now, consider a state w € Q) and an event E C (). The event E is said to
be common knowledge at w if, for every finite sequence of agents i;,...,i, €S,
w € K; (K, (...K; (E))). In this case, at state w, all agents know E, they all
know that they all know E, and this mutual knowledge continues indefi-

nitely.

2.3 Properties

A property is identified with the collection of all probability measures that
satisfy the given condition. Formally, such a property is defined as a subset
of P(Q).

For illustration, consider an event E C () and a probability level a €
[0,1]. The property of assigning probability « to E is represented by the set
{p € P(Q) | p(E) = a}. Similarly, the property of assigning at least probability
a to E is given by {p € P(QQ) | p(E) > a}. As another example, consider a
function ¢ : P(QQ) — R and define the set C = {p € P(Q) | ¢(p) > a}, for some
threshold @ € R. The set C thus represents the property of having a ¢-
attribute of at least @. Moreover, if ¢ is quasi-concave, then C is convex—a
property that plays a role in our results.

In this context, we say that two properties C,C’ C P(Q) are compatible if
there exists a probability measure on () that satisfies both C and C’, that is,
ifCNnC’ =@.

A property C C P(Q)) of probability measures can be extended to sets
of probabilities in at least two distinct ways, depending on whether one
applies a universal or an existential quantifier. More precisely, consider a
closed and convex set Q C P(Q)). We may say that Q satisfies property C
if all probability measures in Q satisfy C. Alternatively, we may say that
Q satisfies property C if some probability measure in Q satisfies C. In our
model, these two interpretations reflect varying degrees of intensity in how
the posteriors satisfy a given property. Fix w € () and, for each i € S, con-
sider a property C; C P(Q). We say that the posterior set Q?i(w)—agent i’s
posteriors at w—fully satisfies property C; if Q! (w) C C;, and that Q. (w)
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partially satisfies property C; if Q?i(a)) NC; = 2.

It is common knowledge at w that Q?i(w) fully satisfies property C;, for
all i € S, if the set {w’ € Q) | Q?"(w’) C C;} is common knowledge at w, for all
i € S. Similarly, it is common knowledge at w that in(a)) partially satisfies
property C;, for all i € S, if the set {w" € Q | Q?i(a)’) N C; # @} is common
knowledge at w, for alli € S.

3 AGREEMENT

3.1 Motivating example

We now present an example illustrating the various features of our ap-
proach and motivating our main result in the next section. Suppose a two-
individual set S = {A,B}. The state space () and the partitions 74 and
nig are as follows: Q) = {a,b,c,d,e, f}, ma = {{a,b},{c,d}, {e},{f}} and mp =
{{b,d},{a,c},{e, f}}. Hence, we know from the Aumann [1976] characteri-
zation of common knowledge that an event E C Q) is common knowledge
at a if and only if the cell in the finest common coarsening of 74 and 7
containing a is included in E; That is, if {a,b,c,d} C E. Next, consider also

the following properties:
Ca = {peP(Q)[p(ab,cd})=1and p({a}) < 3a}

and
Cp = {peP(Q)|p({ab,c,d})=1and p({a}) > 38},

for some a, € [0,1]. Suppose next that the prior sets of probabilities are as
follows:

Qs = (P P(O) | plla, b)) = plle.d)) = p(le)) = 5 and plla.d)) < )

and

Qp = {p € P(Q)[p({b,d}) = p({a,c}) = p({le, f}) = % and p({a,d}) > p'},



for some a’, " € [0,1]. Then, A’s posterior set is given at each of a2 and b by:

Q4" (a) = Q4*(b) = {(3p,1-3p,0,0,0,0)| p€[0,a’])

and at each of c and d by:
Qj'(c) = Q4*(d) = {(0,0,1-3p,3p,0,0)[ p € [0,a"]}

As for B, the posterior set is given at each of b and d by:

QR(b) = QJ*(d) = [(0,1-3p,0,3p,0,0) [ p e [’

and at each of a and c by:

Q§'(a) = Qf*(e) = (3p.0,1-3,0,0,0) [ p e [, ])

In preparation of Theorem 1 in the next subsection, we make the three
following observations:

(1) Q4 and Qg overlap if and only if a’ > g/,

(2) C4 and Cp are compatible if and only if a > B,

(3) It is common knowledge at a that QZA(a) and QgB(a) fully satisty
property C, and Cp respectively if and only if Q}*(w) € C4 and Q}*(w) C
Cp for all w € {a,b,c,d}. This is in turn equivalent to a’ < a and < B’.

Finally, suppose Q4 and Qp overlap. Suppose also that it is common
knowledge at a that QZA(a) and QgB(a) fully satisfy property C4 and Cpg
respectively. It follows from the previous observations that &’ > g/, a’ < «
and B < B’. Then, it must be that a > , and we obtain the compatibility of
Cy4 and Cp.

3.2 Main result

For simplicity, we consider two-agent situations and set S = {A, B}, where A
stands for Alice and B for Bob. (The proof of Theorem 1 makes it clear that

the result continues to hold for finitely many individuals.) We now come to



our main result:

Theorem 1. Let w € Q) and, for all i € S, a convex subset C; C P(Q)). Suppose
that it is common knowledge at w that in(a))fully satisfies property C;, for all
i€S. IfQaNQp# @, then Cy4 and Cg are compatible.

Theorem 1 extends the original Agreement Theorem of Aumann [1976]
by incorporating two key elements: ambiguity and imperfect observation.
First, it accounts for ambiguity by representing an agent’s beliefs as a set
of probability measures, rather than a single, precise probability. Second,
it allows for imperfect observation of others’ posterior beliefs by assuming
that what is common knowledge is not the exact values of these beliefs,
but rather the fact that all agents’ beliefs satisfy a given, agent-dependent
property. Assuming the existence of at least one common prior, the theorem
shows that the agents’ beliefs must be mutually compatible. In doing so, it
establishes a weak form of agreement in which agents may hold different
posterior sets satisfying different properties, as long as these properties are
compatible.

It is possible to retrieve the Agreement Theorem of Aumann [1976] from
Theorem1. Indeed, suppose that Q4 = {g4} and Qp = {gp} are singleton sets.
Then, the condition Q4 N Qp # @ translates into a common single prior,
meaning g4 = qp in the usual sense. Moreover, consider E C () and w € (),
and suppose, as in Aumann [1976], that the exact values of the posteriors for
E are common knowledge at w. Let ay = q4[E|ma(w)] and ap = qg[E|mp(w)]
denote these commonly known values. Consider also, for all i € S, the set
Ci ={p e P(Q)| p(E) = a;}. Since it is common knowledge at w that the
posterior of each i € S lies in C;, Theorem 1 implies that C4NCyg = @. Hence,
we conclude that a4 = ap. In other words, Alice and Bob must have the
same posterior for E.

Moreover, Theorem 1 also provides a version of the Agreement Theo-
rems obtained by Kajii and Ui [2005, 2009] and Carvajal and Correia-da-
Silva [2013]. These authors extend the Agreement Theorem of Aumann
[1976] to multiple priors in various ways, assuming that agents have com-

mon knowledge of the exact posterior sets of probabilities for a given event.
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In this context, Kajii and Ui [2005] provide a result where the equality of
ex ante sets implies an overlap between ex post sets for a given event. Kajii
and Ui [2009] observe that an overlap of ex ante sets is sufficient for this
outcome. ? refine the results of Kajii and Ui [2005, 2009].

To better see the connection to Theorem 1, fix E C (). For any closed
and convex prior set Q C P(Q), define Q(E) = {q(E) | g € Q}, which forms a
closed interval in [0,1]. Consider a closed interval I; in [0,1], for all i € S,
and suppose that there exists some w € () such that the subset {w’ € Q |
Q?i(w’)(E) = I;} is common knowledge at w. It follows that the agent i’s
posteriors fully satisfy property C;, for all i € S, where C; = {p € P(Q) |
p(E)e L;}. If Q4N Qp # @, Theorem 1 ensures the compatibility of C4 and
Cg. Consequently, I4 and Iz must overlap in the spirit of Kajii and Ui [2005,
2009] and Carvajal and Correia-da-Silva [2013].

We close with a comparison to Bach and Cabessa [2023]. In their ap-
proach, each agent has a collection of priors ordered in a lexicographic way
and updates it upon information according to some adequate version of Full
Bayes. Importantly, this version of Full Bayes preserves the lexicographic
order. In this context, they derive in their main result a weak version of
agreement where first-level posteriors agree with each other while posteri-
ors of higher levels may disagree. This is very similar to our Theorem 1. But
we do not have a lexicographic order on the multiple priors and work with
more general properties of beliefs. As a result, we cannot identify a pri-
ori which posterior lies in the intersection of properties and simply prove
that a posterior exists in this intersection. (Note also that Bach and Cabessa
assume the equality of the lexicographic priors while we simply assume a

nontrivial overlap.)

3.3 State-dependent properties

The Agreement Theorem of Aumann [1976] and its extensions under multi-
ple priors are restricted to situations where agents have common knowledge
of the exact values of their posterior beliefs regarding some event. This as-

sumption is quite stringent and typically fails to hold in most states. In
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contrast, Theorem 1 is more broadly applicable, as it can be applied to all
states, provided that the sets C4 and Cp are appropriately chosen, as de-
tailed below.

For all w € Q), let t(w) denote the one element of the finest common

coarsening of 714 and 7t containing w. Define next, for all i € S:

Ci(w) := conv U Q?i(a)’) :
)

wen(w

By construction, C;(w) is the smallest convex property that all agents
commonly know each posterior belief of agent i satisfies. For example, sup-
pose Bob has more information than Alice, meaning that 7ty is finer than
7t4. In this case, we have 1 = 1t4, which implies that C4(w) = QZA(a)), for
all w € Q). In other words, at every state, Bob knows all of Alice’s posterior
probabilities.

The sets C;(w) do not always provide enough precision to determine the
exact probability of a given event, as is the case under the assumptions of
Aumann [1976]. However, even when this level of precision is not attained,

we can still apply Theorem 1 to derive the following corollary:

Corollary 1. If Q4 N Qg # @, then Cy(w) and Cg(w) are compatible, for all
w e Q.

In fact, this corollary is equivalent to Theorem 1 in the sense that the
latter can be derived from the former. Indeed, under the notation and as-
sumptions of Theorem 1, we necessarily have C;(w) C C;, for all i € S, by the
construction of C;(w). Consequently, the compatibility of C4(w) and Cg(w)
ultimately implies the compatibility of C4 and Cp.

The following example illustrates Corollary 1.

Example 1. Suppose the state space () and partitions 74 and 7 are as fol-

lows: Q ={a,b,c,d,e, f}, s ={{a,b},{c,d},{e},{f}} and tg = {{b,d},{a,c}, {e, f}}.
Suppose also that the unique common prior is the uniform distribution on
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Q). Then, at each state w € {a, b, c,d}, we have:

11 11
C = _;_101010101 0101_;_1010
2(@) = convi(,5,0,0,0,0),(0,0,5,5,0,0)
and
Cplw) (X0,L0,0,00(0,%,0,%,0,0)
w)=convil-,Y,-,U,U, » »r A2V S0 Yy .
B 2" 2 2" 2

The unique element in C4(w) N Cg(w) is given by:

1 100)
)4’4’7 .

W[ =

4

N

(

4 ON EXTENSIONS

4.1 Examples

We now examine the robustness of Theorem 1 with two examples.

Example 2. Consider the following state space () and partitions 7t4 and 7g:
Q={ab,cdef}, ma=1{{ab}{cd}{e}{f}}and mp={{b,d} {a c}{e f}}. Sup-
pose also that the two agents have the same initial set of priors Q consisting
of all probability measures g on Q such that g[m;(w)] > 0, for all i € S and

w € (). Consider the following convex subsets:
Ca=1{p e P(Q)[p({b,c}) =0} and Cp = {p € P(Q) [ p({b,c}) = 1}.

Finally, suppose that the true state is given by w = b and set E = {a,b,c, d}.
Note that E is the unique cell in the finest common coarsening of 774 and 7g
that contains w. We then know from Aumann [1976] that an event A C Q) is
common knowledge at w if and only if E C A. At each state in E, Alice and
Bob have at least one posterior in C4 and Cp respectively. It is hence com-
mon knowledge at w that the agent i’s posteriors partially satisfy property
C;, for all i € S. Yet, in contradiction with the conclusion of Theorem 1, C4

and Cp are obviously disjoint.

Example 2 illustrates how Theorem 1 fails when we assume only that it
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is common knowledge at w that agent i’s posteriors partially satisfy property
C;, for all i € S. This reveals a fundamental qualitative shift in the nature of
agreement introduced by ambiguity. In the case of a single prior belief, the
distinction between full and partial satisfaction becomes irrelevant, as the
two coincide. However, under ambiguity, the precise form of satisfaction
plays a crucial role. While agreement in the sense of Aumann [1976] still
holds when full satisfaction is assumed—consistent with Theorem 1—Ex-
ample 2 demonstrates how partial satisfaction can result in incompatible
properties.

Moreover, Geanakoplos [1989, 2021], along with Samet [1990], use pos-
sibility correspondences to model bounded rationality and errors in infor-
mation processing, thereby extending the Agreement Theorem of Aumann
[1976] to non-partitional structures.

To introduce possibility correspondence, note first that each information
partition 7t of Q) defines a function, still denoted by 7, mapping each w € Q
into the one cell 7(w) of 7 containing w. This function has the following

properties by construction:
(1) forall w € Q, w € T(w),
(2) for all w, w’,w” € Q), if w” € M(w’) and w’ € (w), then w” € t(w),
(3) for all w,w’ € ), M(w) N t(w’) = @ implies 7(w) = 7(w’).

Then, a possibility correspondence is a function 7 from () to the power set
of Q) that merely satisfies (1) and (2).

Example 3. Suppose the state space Q) and partition 7t4 of Alice are as fol-
lows: Q) ={a,b,c,d} and 14 = {{a,b,c},{d}}. The possibility correspondence
1tg of Bob is given by: mg(a) = {a, b}, mp(b) = {b}, mp(c) = {b,c} and wg(d) = {d}.
Suppose that Alice and Bob share the same unique prior given by the uni-
form measure on (). Consider also the following disjoint convex sets (see,

Figure 1):

Ca = {( ,0)} and Cg = conv{( ,0)}.

’

! 11OO)(OlOO)(O11
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Q| =
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(%7%7%70)‘ CA
(1,0,0,0) (0,0,1,0)

Figure 1: A failure of Theorem 1 in the nonpartitional case

A subset E C Q) is self-evident to every agent if, whenever E holds true, every
agent knows E, that is, if w € E implies 7;(w) C E, for all i € S. Set E =
{a,b,c} and note that E is self-evident to every agent. Then, by a result of
Geanakoplos [1989, 2021], every subset A C Q such that E C A is commonly
known at every state in E. It is hence common knowledge at w, for each
state w € E, that Alice’s posteriors fully satisfy C4 and Bob’s posteriors fully
satisfy Cp even though C, and Cp are disjoint.

Example 3 highlights a fundamental qualitative breakdown that does
not stem specifically from ambiguity—since it relies on a single common
prior—but rather from the inherent logic of agreement in properties versus
agreement in values. While agreement in values holds in both partition-
based and possibility correspondence frameworks, agreement in properties

is preserved only under partitions.

4.2 Rectangularity

We now extend Theorem 1 to more general classes of properties of sets of
probabilities. To formalize this, we first define a property of sets of prob-
abilities as a subset C of Q(Q)), where Q(Q)) represents the collection of all
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convex and closed prior sets Q C P(Q)). Notably, Theorem 1 remains ap-
plicable when it is common knowledge that each agent i’s posterior set
of probabilities satisfies property C;, provided that each C; is defined as
Ci ={Q € Q(0Q)| Q C Cj}, for some property C; of probabilities. Within
this framework, Propositions 1 and 2 aim to extend Theorem 1 to broader
classes of properties C; of sets of probabilities.

Consider a closed and convex prior set Q C P(Q)) and a partition 7 of Q.

We say that Q is t-rectangular if:

{Zp(E)qE, peQand g€ Q(|E), forall E e n} c Q.

Eem

In this case, the two sets are equal. Rectangularity has been introduced
in the literature in various forms by Sarin and Wakker [1998], Epstein and
Schneider [2003], and Riedel [2004], and is known to characterize the prop-
erty of dynamic consistency. Intuitively, the rectangularity of a prior set Q
with respect to a partition 7w means that the posterior sets Q(:|E), E € 7, are
independent of each other. This independence implies that the posterior

sets do not provide a hedge against uncertainty.

Proposition 1. Consider w € Q) and a convex subset C; C P(Q)), for all i € S.
Suppose that it is common knowledge at w that Q?i(a)) partially satisfies C;, for
allieS. If Q:=Qu = Qpand Q is w;-rectangular, for all i € S, then we have
Q" (w)NC; =@, for all i € S, where m(w) C Q) denotes the unique cell in the

common finest coarsening of 14 and 1g that contains w.

Theorem 1 extends the Agreement Theorem of Aumann [1976]. How-
ever, Example 1 demonstrates that this extension generally fails when full
satisfaction is replaced with partial satisfaction. In this context, Proposi-
tion 1 strengthens the assumptions of Theorem 1 by introducing a common
set of priors and requiring rectangularity with respect to the two informa-
tion partitions. This leads to a conclusion of weak compatibility between
the two properties. To understand this, note first that there always exists
a prior set Q" C P(Q) such that Q'NC; # @, for all i € S. Indeed, we can
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always set Q" = [q1,9,] where g; € C;, for all i € S. This means that any
two nonempty properties can be partially achieved by some set of probabil-
ities. However, Proposition 1 shows that we may even assume that a subset
Q' C P(Q)such that Q'NC; = @, for all i € S, can be written as Q’ = Q[-|1t(w)],
ie. the set of posteriors that the two agents would have held conditional on

1t(w) achieves partially both C4 and Cg.

4.3 Union-consistency

Consider a closed and convex prior set Q C P(C)) and a partition 7 of Q.
A subset E C Q) is -measurable if it is a (disjoint) union of cells of . We
say that Q is union-consistent under 7 if, for all t-measurable E C () and all
FCQ:

() QUFIG) € Q(FIE).

Gem
GCE

To understand this definition, consider a t-measurable subset E C () and a
subset F C Q). Then, E can be written as the disjoint union E = G; U...U Gy
of cells of 7. Suppose a € [0,1] is such that a € Q(F|G,,), forall n e {1,...,N}.
In other words, « is a possible probability value for F conditional on each
G,. Under union-consistency, & must also be a possible probability value
for F conditional on the union of all G, ie. on E. For instance, every -

rectangular subset of P(Q) is also union-consistent under 7.

Proposition 2. Consider w € 3, E C Q and a closed interval I; in [0,1], for
all i € S. Suppose {w" € Q | Q?i(w’)(E) = I;} is common knowledge at w, for all
i€S. If Qq = Qpgand Q; is union-consistent under 1t;, foralli € S, then I, = Ig.

To the best of our knowledge, Proposition 2 offers a novel extension of
the Agreement Theorem to multiple priors. We strengthen the assumptions
of Kajii and Ui [2005, 2009] and Carvajal and Correia-da-Silva [2013] by
assuming union-consistency and the equality of the prior probability sets.
In return, we derive a stronger conclusion than the mere nontrivial overlap

of I4 and I, specifically showing that I, = Ip.
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We compare Proposition 2 to a strong version of the main result of Bach
and Cabessa [2023], a paper already discussed above. In their Theorem
2., they assume a form of mutual absolute continuity and derive the exact
equality of all posterior lexicographic beliefs. This is similar in spirit to
Proposition 2. Like them, we assume a form of mutual absolute continu-
ity: Indeed, given the positivity assumption of Subsection 2.1, the equality
Q := Q4 = Qp ends up implying that each g € Q puts a positive proba-
bility on each cell of each of 4 and 7. But Proposition 2 resorts to the
additional condition of union-consistency to compensate for the loss of the

lexicographic structure they assume.

5 APPLICATION TO TRADE

In this section, we examine the economic significance of Theorem 1 and
other findings in a context of trade a la Milgrom and Stokey [1982].

Suppose f a function from Q) to the reals R representing a possible trade
between Alice and Bob, ie. f(w) describes the net payment that Alice re-
ceives from Bob at state w € Q). For all i € S, let x; € IR denote the initial
wealth of agent i and, for all w € (), assume a binary relation zf‘) on R® rep-
resenting the preferences of agent i at state w on state-contingent monetary
payoffs.

The trade f is Pareto-improving at some state w € Q if x4 + f >4 x4 and
xg—f >§ xp. Then, we say that it is common knowledge at some w € () that
agents are willing to trade f if the collection of states w” € Q such that f
is Pareto-improving at @’ is common knowledge at w. Finally, we say that
trade is never Pareto-optimal if there are no state w and function f such

that it is common knowledge at some w that agents are willing to trade f.

5.1 Maxmin and unanimity preferences

We say that preferences have a maxmin representation if, for all i € S, there

exists a real-valued function u; defined on R and a closed and convex prior
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set Q; C P(Q)) such that, forallie S, weQand g,h e RO:

§>"h < min Eyfuog] > min E[u;oh]
9€Q; ' (w) 9€Q; ' (w)
We say that preferences have a unanimity representation if, for all i € S,

there exists a real-valued function u; defined on IR and a closed and convex
prior set Q; C P(Q) such that, foralli € S, w € Q and g,h € RY:

g > h & [Eyfujog] > E,[u;oh], for allquf"(a)).

Both maxmin and unanimity representations have been given early ax-
iomatic foundations in the decision-theoretic literature (see, for instance,
Gilboa and Schmeidler [1989], Bewley [1986, 2002], and Gilboa et al. [2010]).
It is also important to note that unanimity representations are inherently
incomplete. As a result, an agent who is unable to rank trading against
non-trading will default to maintaining the status quo, thereby refraining
from trade.

Consider next the properties C4, Cg C P(Q)) of probabilities defined by
setting, for all p € P(Q)):

p € Coiff Eylua(xa+ f)] > ua(xa) and p € Cp iff E,[up(xp - f)] > up(xp).

Suppose maxmin or unanimity representations of preferences. Clearly,
the trade f is Pareto-improving at some state w € Q) if and only if Q?i(w)
fully satisfies property C;, for all i € S. Then, we also have the following:
it is common knowledge at w that agents are willing to trade f if and only
if it is common knowledge at w that the agent i’s posteriors fully satisfy
property C;, forall i € S.

Finally, we have:

Proposition 3. Suppose u; is concave and increasing, for all i € S. Then, prop-

erties Cy and Cyg are incompatible.
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Proposition 4. Suppose that the pairs (u;, Q;) provide a maxmin or unanimity
representation of preferences, for all i € S. Suppose u; is concave and increasing,

forallie S, and Qa N Qg # @. Then, trade is never Pareto-optimal.

Proposition 4 leverages Theorem 1 to establish a version of the No Trade
Theorem of Milgrom and Stokey [1982] within a simplified setting that nev-
ertheless accounts for ambiguity. In doing so, it also relates to the work of
Billot et al. [2000], who analyze ex ante trade among maxmin agents who
are already fully insured and risk-averse. Their findings show that the ex-
istence of at least one prior common to all agents is sufficient to preclude
trade. Proposition 4 extends this insight by demonstrating that even with
the added element of asymmetric information, trade remains impossible ex

post.

5.2 Maxmax and justifiable preferences

We say that preferences have a maxmax representation if, for all i € S, there
exists a real-valued function u; defined on R and a closed and convex prior
set Q; C P(Q)) such that, forallie S, weQand g, h e RS:

g > h — max Ej|u;og] > max E|u;oh].
q€Q; ' (w) q€Q; ' (w)

We say that preferences have a justifiable representation if, for all i € S,
there exists a real-valued function u; defined on IR and a closed and convex
prior set Q; € P(Q)) such that, forallie S, weQ and g,h e RS:

g > h < [Ejujog] > E,[u;oh], for somequ?i(w).

Maxmax representations can be obtained axiomatically by replacing the ax-
iom of ambiguity aversion of Gilboa and Schmeidler [1989] with an axiom
of ambiguity seeking. As for foundations of justifiability representations,
see Lehrer and Teper [2011].

Suppose maxmax or justifiable representations. This time, the trade f is
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Pareto-improving in some state w € () if and only if some probabilities in
Q?i(w) satisfy property C;, for all i € S. Therefore, it is common knowledge
at w that agents are willing to trade f if and only if it is common knowledge
at w that Q?i (w) partially satisfy C;, for all i € S. Then, we can already antic-
ipate from Example 1 that Proposition 4 will fail in the context of maxmax
or justifiable preferences.

The next example confirms this conjecture.

Example 4. Consider the following state space Q) and partitions 7t4 and 7g:
Q={ab,c,d,ef}, ma={{ablicd}{el{f}}and g = {{b,d},{a,c} e f}}. Sup-
pose that the true state is given by w = b and set E = {4, b, c,d}. Note that E is
the unique cell in the finest common coarsening of 714 and 7g that contains
w. We then know from Aumann [1976] that an event A C Q) is common
knowledge at w if and only if E C A. Suppose also that the two agents have
maxmax or justifiable preferences and have the same initial set of priors
Q consisting of all probability measures g on Q) such that g[n;(w)] > 0, for
all i € S and w € Q). Take u; = Id, for all i € S. In this context, consider
a trade of the form f = x -1y, ). That is, Alice receives a sure amount of
x € (0,1) from Bob and pays him 1 only if b or ¢ obtains. Now, Alice is ac-
tually willing to make this trade because she has a posterior in Q™4 (w) that
assigns a probability of 0 to {b}. But, furthermore, Alice would also be will-
ing to trade at each of states c and d because she would also have a posterior
in Q™(c) = Q™A(d) assigning a probability of 0 to {c}. It is hence common
knowledge that Alice wants to trade f. Likewise, Bob is actually willing to
make the trade because he has a posterior in Q™8(w) that assigns a proba-
bility of 1 to {b}. Furthermore, Bob would also be willing to trade at each
of states a and ¢ because he would also have a posterior in Q™8(a) = Q™3(c)
assigning a probability of 1 to {c}. Finally, it is here common knowledge
that Alice and Bob both want to trade.
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5.3 a-maxmin preferences

We finally revisit Example 4 in the context of @#-maxmin preferences and
show that ambiguity seeking as captured by maxmax representations is not
a necessary ingredient for trade.

We say that preferences have an a-maxmin representation if, for all i € S,
there exists a; € [0,1], a real-valued function u; defined on R and a closed
and convex prior set Q; C P(Q) such that, foralli € S, w € Q and g,h € R®:

g > h=V(g)>Vh),
where, for all k € R®:

V¥(k) = a; min Eg[u;o0k] + (1 -a;) max [E,[u;ok].
9€Q;" (@) 9€Q;" (w)

For the axiomatic foundations of a-maxmin, see, for instance, Ghirardato
et al. [2004], Frick et al. [2022] and Hartmann [2023]. It is common to in-
terpret a; as agent i’s degree of ambiguity aversion. Specifically, a; = 1 cor-
responds to full ambiguity aversion, while a; = 0 represents full ambiguity
seeking. Intermediate values «; € (0,1) reflect more nuanced attitudes to-
wards ambiguity. Example 4 below demonstrates that full ambiguity seek-
ing (ay = ag = 0) is not a necessary condition for trade. In fact, trade can
still occur when the overall ambiguity aversion remains sufficiently low,

meaning that a4 + ag < 1.

Example 4. (cont.) In the same context as before, we introduce «; € [0,1]
and suppose that («a;,u;, Q) provides an a-maxmin representation of the
preferences of agent i. Suppose a4 + ap < 1 and take any x € (0, 1) such that
ay < x <1-ag. Now, Alice is actually willing to make this trade at w = b
because we have: Vi’(f) = as(x—1)+ (1 —as)x = x—a, > 0. Since the same
would hold true at each state in E, it is common knowledge at every state
in E that Alice wants to trade. Bob is likewise willing to make this trade at
w = b because we have: Vi’(-f) = ap(—x)+(1-ap)(1-x) =1-ag—x>0. The

same would hold true at each state in E. It is therefore common knowledge
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at every state in E that both Alice and Bob want to trade.

6 DiscussioN

Multiple extensions of the Agreement Theorem of Aumann [1976] exist in
the literature, and we refer to the surveys of Bonanno and Nehring [1997]
and Ménager [2006], Ménager [2023]. To name just a few, Monderer and
Samet [1989] and Bach and Cabessa [2017] study versions of the Agree-
ment Theorem in cases where the assumption of common knowledge is re-
placed with weakers modalities of collective knowledge. In a similar spirit,
Geanakoplos [1989, 2021] and Samet [1990] weaken the structure of indi-
vidual knowledge. In contrast, Hellman [2013] weakens the assumption
of a common prior and shows that common knowledge of posteriors in a
case of "almost" common priors is only possible if the posteriors are "almost
equal". Bach and Perea [2013] and Tsakas [2018] modify the Bayesian up-
dating rule to include the possibility of updating on a null event. Other
works call the state-space approach to uncertainty into question. For in-
stance, Heifetz et al. [2013] study agreement in a context of unawareness
while Khrennikov and Basieva [2014] and Contreras-Tejada et al. [2021]
study agreement in a context of quantum uncertainty.

Of particular relevance to Section 5 are the No Trade like results a la
Milgrom and Stokey [1982]. Several authors extend the Aumann conclusion
of agreement into a No Trade condition which they characterize as equiv-
alent to the assumption of a common prior. (See, Morris [1994], Samet
[1998], Feinberg [2000] or Lehrer and Samet [2014].) Gizatulina and Hell-
man [2019] go even further by showing that a common prior is not neces-
sary to the No Trade result as long as one commits to common knowledge
of rationality.

Meanwhile, ambiguity is often rooted in the work of Keynes [1921] and
Knight [1921] and receives a new impetus in the Ellsberg [1961] paradox.
Schmeidler [1989] famously solves the paradox by appealing to nonadditive

probabilities, also known as capacities. But sets of probabilities are also
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often used. For instance, see Bewley [1986, 2002], Gilboa and Schmeidler
[1989], Ghirardato et al. [2004], Gilboa et al. [2010] and Lehrer and Teper
[2011].

The adequate way to update a set of probabilities upon information re-
mains a controversial issue as there are in general several equally plausi-
ble possibilities. Our choice of Full Bayes is motivated by two key reasons.
First, it is well understood from an axiomatic perspective, as shown by Pires
[2002] and Siniscalchi [2009]. Second, it has strong normative appeal due
to its connection with dynamic consistency. In the context of maxmin pref-
erences a la Gilboa and Schmeidler [1989], Epstein and Schneider [2003]
show that Full Bayes is necessary to ensure dynamic consistency. Further-
more, in the framework of unanimity representations developed by Bewley
[1986, 2002] and Gilboa et al. [2010], Full Bayes directly characterizes dy-
namic consistency.

Finally, Aumann’s Agreement Theorem in the context of multiple pri-
ors and Full Bayes is explored by Kajii and Ui [2005, 2009], and Carvajal
and Correia-da-Silva [2013]. The latter also study the alternative updating
rule known as maximum likelihood. They show by means of example that
agreement may fail in general and identify stronger conditions on what is
commonly known to retrieve agreement.

Other authors study agreement for beliefs in the form of capacities a la
Schmeidler [1989]. Zimper [2009] provides examples of disagreements due
only to differences in the updating rule agents use. Dominiak and Lefort
[2013] study specifically neo-additive capacities and impose the same up-
dating rule to all agents. Under these assumptions, they derive a form of
agreement. Meanwhile, Dominiak and Lefort [2013] study general capac-
ities and obtain again agreement by supposing that all information parti-
tions are unambiguous, a condition similar in spirit to rectangularity and

union-consistency here used in Propositions 1 and 2.
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7 CONCLUSION

This paper extends Aumann’s Agreement Theorem in two key directions:
incorporating ambiguity through multiple priors and relaxing the assump-
tion that agents observe perfectly each other’s posterior beliefs. By model-
ing beliefs as sets of probabilities and defining agreement in terms of com-
monly known properties of these sets, we establish a generalized Agree-
ment Theorem that subsumes Aumann’s original result and its extensions
by Kajii and Ui [2005, 2009] and Carvajal and Correia-da-Silva [2013].

Our main result highlights that agreement hinges on the mutual com-
patibility of the properties that agents’ posterior sets must satisfy. We fur-
ther explore the implications of this theorem in economic settings, notably
deriving a version of the No Trade Theorem of Milgrom and Stokey [1982]
under multiple priors. Additionally, we demonstrate how trade can emerge
under alternative preference structures, illustrating the broader applicabil-
ity of our framework.

While our analysis focuses on fully satisfied properties of posterior sets,
an important open question is whether the theorem can be extended to
more general forms of partial satisfaction. Future research could also exam-
ine alternative updating rules beyond Full Bayes and explore the role of in-
formation structures that deviate from standard partition models. These di-
rections offer promising avenues for deepening our understanding of agree-

ment under ambiguity and its consequences in economic theory.

APPENDIX

Proof of Theorem 1: Let E C () be the one cell in the common finest coars-
ening of m;, i € S, that contains w. Since, by assumption, it is common
knowledge at  that the agent i’s posteriors, ie. Q! (w), fully satisfy prop-
erty C;, for all i € S, we know from Aumann [1976] that E C {w’ € Q |
Q?i(a)’) C C;}, forall i € S. Fix i € S. Then, we can find finitely many

cells of 7;, denoted by Ej,..., Ey, whose disjoint union forms all of E. Con-

23



sider p € P(Q) in the intersection of all Q;, i € S. For all n € {1,...,N},
we have E, C {w’ € Q| Q?i(a)') C C;}. Then, take any w’ € E,. It follows
that Q7" (w’) C C; with p(-|E,) € Q"(w’) by Full Bayes. Hence, we obtain

p(-|E,) € C;. Furthermore, we have

N

pUIE) = ) p(E,IE)-p(IEy).

n=1

Since C; is convex, it follows that p(-|E) lies in C;, and this is true for all

1ie€S.O0

Alternative proof of Theorem 1: In this alternative proof, we suppose for
simplicity that each prior p; of each agent i € S has full support. For each
i € S, define a function f; from the power set of () into {0, 1} such that, for
all E € O, we have: f;(E) =1 iff Q;(-|E) C C;. Thanks to the convexity of C;,
we obtain that, for all i € S and disjoint E,F C Q, if f;(E) = f;(F) = 1, then
fi(EUF) = 1. In other words, f; preserves disjoint unions. The contraposition
of Rubinstein-Wolinsky’s (1990) Proposition 1 then yields the existence of
E C Q such that f;(E) = 1 and hence Q;(-|E) C C;, for all i € S. Now, let
p € QaNQp. We must have p(-|[E) € Qa(-|[E)N Qp(|E) S CaNCp. O

Proof of Corollary 1: By construction, at every state o’ € 7t(w), the posterior
sets Q)" (w’) and Q" (w’) are included in C4(w) and Cp(w), respectively. We
know from the characterization of common knowledge of Aumann [1976]
that it is common knowledge at w that the two posterior sets QZA(a)) and
QgB(w) are included in C4(w) and Cg(w). The result then follows from The-

orem 1. O

Proof of Proposition 1: Set E = 7t(w). It is sufficient to show that Q;(-|E) N
C;i =@, forall i € S, to conclude. Since it is common knowledge at w that
Q(w) partially satisfy property C;, for all i € S, we know from the char-
acterization of common knowledge of Aumann [1976] that E is included in
{0 e Q| Qf(w')NC; =@}, forall i € S. Consider now i € S. We can find
finitely many cells of 7t;, denoted by Ej,..., Ey whose disjoint union forms
all of E. Then, we must have Q;(-|E,) N C; = @, for all n € {1,...,N}. (Indeed,

24



take any w’ € E, and observe that Q;(-|E,) = Q(w’) by Full Bayes so that
we have Q;(-|E,) N C; = QF(w’) N C; # @.) Consider then g, € Q;(-[E,) N C;,
forall me{l,...,N}. Let also Ey.y,..., E,, denote the cells of 7; not already
included in the family {E;,..., Ey}, and, for each n € {N +1,...,M}, fix an
arbitrary g, € Q;(-|E,). Consider next: q = nylep(En)qn, where p € Q; is
arbitrary. By m;-rectangularity, g is an element of Q;. It follows from Full
Bayes that g(-|E) is an element of Q;(-|E). But moreover we have: q(-|E) =
ij:lp(EnlE)qn. Since C; is convex and contains g, for all n € {1,...,N} by
construction, it must also contain g(-|E). Hence, we obtain Q;(-|E)NC; # @.
O

Proof of Proposition 2: Let F C () be the one cell in the common finest
coarsening of 14 and 7t that contains w. Since {w’ € Q | Q?i(w’)(E) =1I;} is
common knowledge at w, for all i € S, we know from the characterization
of common knowledge of Aumann [1976] that F C {w’ € Q| Q! (w’)(E) = I},
for all i € S. Since Q4 = Qp, it is sufficient to show Q;(E|F) =1I;, foralli e S
to obtain I4 = Iz and conclude. For i € S, we can find finitely many cells of
7t;, denoted by Fy,..., Fy whose disjoint union forms all of F. Suppose first
a €[0,1] is an element of Q;(E|F) and hence such that a = g;(E|F), for some
q; € Q; satisfying ¢;(F) > 0. Hence, we obtain: a = nNzlqi(Fan)qi(Ean).
Now, since F,, C F, we must have Q?i(w’)(E) =1I;, for all " € F, and n €
{1,...,N}, and obtain Q;(E|F,) = I; and therefore g;(E|F,,) € I;. But then « is
an average of values all in the interval I; and hence an element of I; itself.
Suppose now that a € I;. For every n € {1,..., N}, we have Q?i(w’)(E) =I;, for
all w” € F, because F, C F. Hence, we obtain Q;(E|F,,) = I;, and there exists
q; € Q; such that g/ (E|F,) = a. Then, by union-consistency under 7;, there
exists g; € Q; such that g;(E|F) = a. Hence, @ € Q;(E|F). O

Proof of Proposition 3: Suppose p € C4. We then have [E,[ua(xs + f)] >
ua(xa). By the concavity of us, we obtain us[xs+E,(f)] > ua(xs). Since u, is
increasing, we further have x4 + E,(f) > x4 and hence E,(f) > 0. Therefore,
we must have xg > xg — E,(f). Since ugp is increasing, we obtain ug(xg) >
ug[xg — B,(f)]. By the concavity of up, we obtain ug(xg) > Ep[ug(xp — f)].
Finally, it must be the p ¢ Cp. O
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Proof of Proposition 4: Fix f € R® and w € Q. Let C, and Cp be the
properties as in Proposition 3. Observe that C4 and Cg are convex. By
Proposition 3, they are also incompatible. Since Q4 NQp # @ by assumption,
Theorem 1 implies that it cannot be common knowledge at w that Q?i(a))
tully satisfy property C;, for all i € S. Put differently, it cannot be common
knowledge at w that agents are willing to trade f. Hence, trade is never

Pareto-optimal. O
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