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Abstract

We extend the Agreement Theorem of Aumann [1976] in two key di-

rections. First, we introduce Knightian uncertainty by modeling be-

liefs as sets of probability measures, allowing for ambiguity in agents’

posterior beliefs. Second, we relax the assumption that agents observe

perfectly each other’s posterior probabilities, replacing it with the as-

sumption that they perceive only certain properties of their posterior

probability sets. Our main result establishes that if agents share at

least one common prior, they can only have common knowledge that

their posterior probabilities satisfy a given property if these properties

are mutually compatible. Furthermore, we explore economic implica-

tions in the context of trade under asymmetric information, deriving

a No Trade result under ambiguity and highlighting conditions under

which trade may still occur.
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1 Introduction

Suppose Alice and Bob share a common prior belief about the weather later

in the day. They acquire potentially asymmetric information and update

their common prior to form posterior beliefs. Furthermore, suppose their

acquired information makes the exact values of their posterior beliefs for

rain common knowledge—that is, both know these values, both know that

they both know them, and so on ad infinitum. The seminal Agreement

Theorem of Aumann [1976] establishes that, under these conditions, Alice

and Bob’s posterior beliefs must necessarily coincide. In other words, they

cannot agree to disagree about the probability of rain.

This paper extends Aumann’s Agreement Theorem in two complemen-

tary directions. First, we incorporate Knightian uncertainty or ambiguity,

recognizing that agents may be unable or reluctant to assign precise proba-

bilities to uncertain events. Instead, their beliefs may be vague, a perspec-

tive rooted in the work of Ellsberg [1961]. Following Gilboa and Schmei-

dler [1989] and others, we model these vague beliefs as sets of probabilities.

Agents begin with an initial set of probabilities, update their beliefs upon

receiving information, and form a posterior set of probabilities.

The second extension relaxes the assumption that agents observe per-

fectly each other’s posterior beliefs. In reality, economic agents rarely have

direct access to the exact values of others’ beliefs; rather, they infer certain

properties of these beliefs, often in a vague or informal manner. For exam-

ple, Bob might infer that Alice’s probability of rain is low simply because

she is wearing sunglasses, while Alice might infer that Bob’s probability is

high because he is carrying an umbrella. Here, we assume that the prop-

erties of beliefs conveyed through information are exogenously given and

may be reflected in observable actions, such as clothing choices. Within

this framework, it is natural to represent a property of beliefs as a set of

probability measures.

Building on these extensions, we introduce a generalized version of Au-

mann’s Agreement Theorem. We replace the assumption of a common prior
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with the weaker condition that agents’ prior sets of probabilities have a

nonempty intersection. Instead of assuming common knowledge of ex-

act posterior probability sets, we assume common knowledge that all of

an agent’s posterior probabilities satisfy a given property—meaning the

agent’s entire posterior set fully satisfies this property. Our main result es-

tablishes that agreement requires these properties to be mutually compat-

ible. Hence, we obtain a weak form of agreement where posterior beliefs

do not necessarily coincide, but their commonly known properties must

nonetheless be compatible. We also derive a corollary showing that our

generalized Agreement Theorem holds at every state of the world when ap-

propriate properties are identified. However, our result applies only to spe-

cific properties of posterior sets, raising the question of whether it can be

extended to broader classes of properties. To explore this, we introduce the

notion of partial satisfaction, where only some posteriors—not necessarily

all—satisfy a given property. In this direction, we establish two further re-

sults.

To illustrate the significance of our main result and its form of weak

agreement, we apply them to a trade setting inspired by Milgrom and Stokey

[1982]. The analysis crucially depends on the way agents react to the ambi-

guity they perceive, and we are lead to consider several decision-theoretic

models. In some cases, the logic of weak agreement remains strong enough

to preclude trade. But, in other cases, simple examples show that weak

agreement remains compatible with trade.

The remainder of this paper is structured as follows. We begin by intro-

ducing the framework and notation, defining prior and posterior probabili-

ties as well as the notion of a property. Next, we present our main result and

discuss an initial set of applications. We then explore potential extensions,

including alternative properties of probability sets and non-partitional in-

formation structures. Finally, we focus on applying our result to trade. All

proofs are collected in the Appendix.
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2 Framework

2.1 General

Let Ω be a finite state space, and let S be a finite set of individuals. Each

agent i ∈ S is associated with a partition πi of Ω. For every ω ∈ Ω, let

πi(ω) denote the unique cell of πi containing ω. As usual, πi represents the

information partition of agent i, meaning that at state ω, agent i does not

know the precise state but only that it belongs to πi(ω).

A probability measure on Ω is a function p mapping the power set of Ω

to the set of nonnegative real numbers, satisfying p(Ω) = 1 and p(E ∪ F) =

p(E) + p(F), for all disjoint subsets E,F ⊆ Ω. Let P (Ω) denote the set of all

such probability measures. For each i ∈ S, we assume a closed and convex

subset Qi ⊆ P (Ω), representing agent i’s prior beliefs (or simply, i’s prior set).
For any E ⊆ Ω, define Qi(E) = {qi(E) | qi ∈ Qi} as the set of probabilities

assigned to E by measures in Qi .

We assume throughout the paper that a prior set of probabilities is up-

dated according to the rule known as Full Bayes. (See Section 6 for alter-

native approaches.) To ensure such form of updating is well-defined, we

assume qi[πi(ω)] > 0, for all i ∈ S, qi ∈ Qi , and ω ∈ Ω. Under this as-

sumption, the Bayesian update of qi conditional on πi(ω) is given by the

probability measure qi(· | πi(ω)), defined, for all E ⊆ Ω, as: qi(E|πi(ω)) =

qi(πi(ω)∩ E)/qi(πi(ω)). We denote Qπi
i (ω) = Qi[· | πi(ω)] as the set of agent

i’s posterior beliefs at state ω (or simply, i’s posterior set at ω). Thus, each

agent i starts with prior beliefs Qi and, upon acquiring information at state

ω, updates Qi to Qπi
i (ω) according to Full Bayes.

2.2 Knowledge

Following Aumann [1976], we define, for each i ∈ S, a mapping Ki from

the power set of Ω to itself by setting, for every event E ⊆ Ω: Ki(E) = {ω ∈
Ω | πi(ω) ⊆ E}. The set Ki(E) consists of all states where agent i knows that

event E holds. Thus, Ki(E) is itself an event, interpreted as “agent i knows
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E”.

Now, consider a state ω ∈Ω and an event E ⊆Ω. The event E is said to

be common knowledge at ω if, for every finite sequence of agents i1, . . . , in ∈ S,

ω ∈ Ki1(Ki2(. . .Kin(E))). In this case, at state ω, all agents know E, they all

know that they all know E, and this mutual knowledge continues indefi-

nitely.

2.3 Properties

A property is identified with the collection of all probability measures that

satisfy the given condition. Formally, such a property is defined as a subset

of P (Ω).

For illustration, consider an event E ⊆ Ω and a probability level α ∈
[0,1]. The property of assigning probability α to E is represented by the set

{p ∈ P (Ω) | p(E) = α}. Similarly, the property of assigning at least probability

α to E is given by {p ∈ P (Ω) | p(E) ≥ α}. As another example, consider a

function ϕ : P (Ω)→R and define the set C = {p ∈ P (Ω) | ϕ(p) ≥ α}, for some

threshold α ∈ R. The set C thus represents the property of having a ϕ-

attribute of at least α. Moreover, if ϕ is quasi-concave, then C is convex—a

property that plays a role in our results.

In this context, we say that two properties C,C′ ⊆ P (Ω) are compatible if

there exists a probability measure on Ω that satisfies both C and C′, that is,

if C ∩C′ , ∅.

A property C ⊆ P (Ω) of probability measures can be extended to sets

of probabilities in at least two distinct ways, depending on whether one

applies a universal or an existential quantifier. More precisely, consider a

closed and convex set Q ⊆ P (Ω). We may say that Q satisfies property C

if all probability measures in Q satisfy C. Alternatively, we may say that

Q satisfies property C if some probability measure in Q satisfies C. In our

model, these two interpretations reflect varying degrees of intensity in how

the posteriors satisfy a given property. Fix ω ∈ Ω and, for each i ∈ S, con-

sider a property Ci ⊆ P (Ω). We say that the posterior set Qπi
i (ω)—agent i’s

posteriors at ω—fully satisfies property Ci if Qπi
i (ω) ⊆ Ci , and that Qπi

i (ω)
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partially satisfies property Ci if Qπi
i (ω)∩Ci , ∅.

It is common knowledge at ω that Qπi
i (ω) fully satisfies property Ci , for

all i ∈ S, if the set {ω′ ∈Ω |Qπi
i (ω′) ⊆ Ci} is common knowledge at ω, for all

i ∈ S. Similarly, it is common knowledge at ω that Qπi
i (ω) partially satisfies

property Ci , for all i ∈ S, if the set {ω′ ∈ Ω | Qπi
i (ω′) ∩ Ci , ∅} is common

knowledge at ω, for all i ∈ S.

3 Agreement

3.1 Motivating example

We now present an example illustrating the various features of our ap-

proach and motivating our main result in the next section. Suppose a two-

individual set S = {A,B}. The state space Ω and the partitions πA and

πB are as follows: Ω = {a,b,c,d,e, f }, πA = {{a,b}, {c,d}, {e}, {f }} and πB =

{{b,d}, {a,c}, {e, f }}. Hence, we know from the Aumann [1976] characteri-

zation of common knowledge that an event E ⊆ Ω is common knowledge

at a if and only if the cell in the finest common coarsening of πA and πB

containing a is included in E; That is, if {a,b,c,d} ⊆ E. Next, consider also

the following properties:

CA = {p ∈ P (Ω) | p({a,b,c,d}) = 1 and p({a}) ≤ 3α}

and

CB = {p ∈ P (Ω) | p({a,b,c,d}) = 1 and p({a}) ≥ 3β},

for some α,β ∈ [0,1]. Suppose next that the prior sets of probabilities are as

follows:

QA = {p ∈ P (Ω) | p({a,b}) = p({c,d}) = p({e}) =
1
3

and p({a,d}) ≤ α′}

and

QB = {p ∈ P (Ω) | p({b,d}) = p({a,c}) = p({e, f }) =
1
3

and p({a,d}) ≥ β′},
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for some α′,β′ ∈ [0,1]. Then, A’s posterior set is given at each of a and b by:

QπA
A (a) = QπA

A (b) = {(3p,1− 3p,0,0,0,0) | p ∈ [0,α′]}

and at each of c and d by:

QπA
A (c) = QπA

A (d) = {(0,0,1− 3p,3p,0,0) | p ∈ [0,α′]}.

As for B, the posterior set is given at each of b and d by:

QπB
B (b) = QπB

A (d) = {(0,1− 3p,0,3p,0,0) | p ∈ [β′,
1
3

]}

and at each of a and c by:

QπB
B (a) = QπB

B (c) = {(3p,0,1− 3p,0,0,0) | p ∈ [β′,
1
3

]}.

In preparation of Theorem 1 in the next subsection, we make the three

following observations:

(1) QA and QB overlap if and only if α′ ≥ β′,

(2) CA and CB are compatible if and only if α ≥ β,

(3) It is common knowledge at a that QπA
A (a) and QπB

B (a) fully satisfy

property CA and CB respectively if and only if QπA
A (ω) ⊆ CA and QπB

A (ω) ⊆
CB for all ω ∈ {a,b,c,d}. This is in turn equivalent to α′ ≤ α and β ≤ β′.

Finally, suppose QA and QB overlap. Suppose also that it is common

knowledge at a that QπA
A (a) and QπB

B (a) fully satisfy property CA and CB

respectively. It follows from the previous observations that α′ ≥ β′, α′ ≤ α

and β ≤ β′. Then, it must be that α ≥ β, and we obtain the compatibility of

CA and CB.

3.2 Main result

For simplicity, we consider two-agent situations and set S = {A,B}, where A

stands for Alice and B for Bob. (The proof of Theorem 1 makes it clear that

the result continues to hold for finitely many individuals.) We now come to
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our main result:

Theorem 1. Let ω ∈Ω and, for all i ∈ S, a convex subset Ci ⊆ P (Ω). Suppose
that it is common knowledge at ω that Qπi

i (ω) fully satisfies property Ci , for all
i ∈ S. If QA ∩QB , ∅, then CA and CB are compatible.

Theorem 1 extends the original Agreement Theorem of Aumann [1976]

by incorporating two key elements: ambiguity and imperfect observation.

First, it accounts for ambiguity by representing an agent’s beliefs as a set

of probability measures, rather than a single, precise probability. Second,

it allows for imperfect observation of others’ posterior beliefs by assuming

that what is common knowledge is not the exact values of these beliefs,

but rather the fact that all agents’ beliefs satisfy a given, agent-dependent

property. Assuming the existence of at least one common prior, the theorem

shows that the agents’ beliefs must be mutually compatible. In doing so, it

establishes a weak form of agreement in which agents may hold different

posterior sets satisfying different properties, as long as these properties are

compatible.

It is possible to retrieve the Agreement Theorem of Aumann [1976] from

Theorem1. Indeed, suppose that QA = {qA} and QB = {qB} are singleton sets.

Then, the condition QA ∩ QB , ∅ translates into a common single prior,

meaning qA = qB in the usual sense. Moreover, consider E ⊆Ω and ω ∈Ω,

and suppose, as in Aumann [1976], that the exact values of the posteriors for

E are common knowledge at ω. Let αA = qA[E|πA(ω)] and αB = qB[E|πB(ω)]

denote these commonly known values. Consider also, for all i ∈ S, the set

Ci = {p ∈ P (Ω) | p(E) = αi}. Since it is common knowledge at ω that the

posterior of each i ∈ S lies in Ci , Theorem 1 implies that CA∩CB , ∅. Hence,

we conclude that αA = αB. In other words, Alice and Bob must have the

same posterior for E.

Moreover, Theorem 1 also provides a version of the Agreement Theo-

rems obtained by Kajii and Ui [2005, 2009] and Carvajal and Correia-da-

Silva [2013]. These authors extend the Agreement Theorem of Aumann

[1976] to multiple priors in various ways, assuming that agents have com-

mon knowledge of the exact posterior sets of probabilities for a given event.
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In this context, Kajii and Ui [2005] provide a result where the equality of

ex ante sets implies an overlap between ex post sets for a given event. Kajii

and Ui [2009] observe that an overlap of ex ante sets is sufficient for this

outcome. ? refine the results of Kajii and Ui [2005, 2009].

To better see the connection to Theorem 1, fix E ⊆ Ω. For any closed

and convex prior set Q ⊆ P (Ω), define Q(E) = {q(E) | q ∈ Q}, which forms a

closed interval in [0,1]. Consider a closed interval Ii in [0,1], for all i ∈ S,

and suppose that there exists some ω ∈ Ω such that the subset {ω′ ∈ Ω |
Qπi

i (ω′)(E) = Ii} is common knowledge at ω. It follows that the agent i’s

posteriors fully satisfy property Ci , for all i ∈ S, where Ci = {p ∈ P (Ω) |
p(E) ∈ Ii}. If QA ∩QB , ∅, Theorem 1 ensures the compatibility of CA and

CB. Consequently, IA and IB must overlap in the spirit of Kajii and Ui [2005,

2009] and Carvajal and Correia-da-Silva [2013].

We close with a comparison to Bach and Cabessa [2023]. In their ap-

proach, each agent has a collection of priors ordered in a lexicographic way

and updates it upon information according to some adequate version of Full

Bayes. Importantly, this version of Full Bayes preserves the lexicographic

order. In this context, they derive in their main result a weak version of

agreement where first-level posteriors agree with each other while posteri-

ors of higher levels may disagree. This is very similar to our Theorem 1 . But

we do not have a lexicographic order on the multiple priors and work with

more general properties of beliefs. As a result, we cannot identify a pri-

ori which posterior lies in the intersection of properties and simply prove

that a posterior exists in this intersection. (Note also that Bach and Cabessa

assume the equality of the lexicographic priors while we simply assume a

nontrivial overlap.)

3.3 State-dependent properties

The Agreement Theorem of Aumann [1976] and its extensions under multi-

ple priors are restricted to situations where agents have common knowledge

of the exact values of their posterior beliefs regarding some event. This as-

sumption is quite stringent and typically fails to hold in most states. In
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contrast, Theorem 1 is more broadly applicable, as it can be applied to all

states, provided that the sets CA and CB are appropriately chosen, as de-

tailed below.

For all ω ∈ Ω, let π(ω) denote the one element of the finest common

coarsening of πA and πB containing ω. Define next, for all i ∈ S:

Ci(ω) := conv


⋃

ω′∈π(ω)

Qπi
i (ω′)

 .
By construction, Ci(ω) is the smallest convex property that all agents

commonly know each posterior belief of agent i satisfies. For example, sup-

pose Bob has more information than Alice, meaning that πB is finer than

πA. In this case, we have π = πA, which implies that CA(ω) = QπA
A (ω), for

all ω ∈Ω. In other words, at every state, Bob knows all of Alice’s posterior

probabilities.

The sets Ci(ω) do not always provide enough precision to determine the

exact probability of a given event, as is the case under the assumptions of

Aumann [1976]. However, even when this level of precision is not attained,

we can still apply Theorem 1 to derive the following corollary:

Corollary 1. If QA ∩QB , ∅, then CA(ω) and CB(ω) are compatible, for all
ω ∈Ω.

In fact, this corollary is equivalent to Theorem 1 in the sense that the

latter can be derived from the former. Indeed, under the notation and as-

sumptions of Theorem 1, we necessarily have Ci(ω) ⊆ Ci , for all i ∈ S, by the

construction of Ci(ω). Consequently, the compatibility of CA(ω) and CB(ω)

ultimately implies the compatibility of CA and CB.

The following example illustrates Corollary 1.

Example 1. Suppose the state space Ω and partitions πA and πB are as fol-

lows: Ω = {a,b,c,d,e, f }, πA = {{a,b}, {c,d}, {e}, {f }} and πB = {{b,d}, {a,c}, {e, f }}.
Suppose also that the unique common prior is the uniform distribution on
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Ω. Then, at each state ω ∈ {a,b,c,d}, we have:

CA(ω) = conv{(1
2
,
1
2
,0,0,0,0), (0,0,

1
2
,
1
2
,0,0)}

and

CB(ω) = conv{(1
2
,0,

1
2
,0,0,0), (0,

1
2
,0,

1
2
,0,0)}.

The unique element in CA(ω)∩CB(ω) is given by:

(
1
4
,
1
4
,
1
4
,
1
4
,0,0).

4 On extensions

4.1 Examples

We now examine the robustness of Theorem 1 with two examples.

Example 2. Consider the following state space Ω and partitions πA and πB:

Ω = {a,b,c,d,e, f }, πA = {{a,b}, {c,d}, {e}, {f }} and πB = {{b,d}, {a,c}, {e, f }}. Sup-

pose also that the two agents have the same initial set of priors Q consisting

of all probability measures q on Ω such that q[πi(ω)] > 0, for all i ∈ S and

ω ∈Ω. Consider the following convex subsets:

CA = {p ∈ P (Ω) | p({b,c}) = 0} and CB = {p ∈ P (Ω) | p({b,c}) = 1}.

Finally, suppose that the true state is given by ω = b and set E = {a,b,c,d}.
Note that E is the unique cell in the finest common coarsening of πA and πB

that contains ω. We then know from Aumann [1976] that an event A ⊆Ω is

common knowledge at ω if and only if E ⊆ A. At each state in E, Alice and

Bob have at least one posterior in CA and CB respectively. It is hence com-

mon knowledge at ω that the agent i’s posteriors partially satisfy property

Ci , for all i ∈ S. Yet, in contradiction with the conclusion of Theorem 1, CA

and CB are obviously disjoint.

Example 2 illustrates how Theorem 1 fails when we assume only that it
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is common knowledge at ω that agent i’s posteriors partially satisfy property

Ci , for all i ∈ S. This reveals a fundamental qualitative shift in the nature of

agreement introduced by ambiguity. In the case of a single prior belief, the

distinction between full and partial satisfaction becomes irrelevant, as the

two coincide. However, under ambiguity, the precise form of satisfaction

plays a crucial role. While agreement in the sense of Aumann [1976] still

holds when full satisfaction is assumed—consistent with Theorem 1—Ex-

ample 2 demonstrates how partial satisfaction can result in incompatible

properties.

Moreover, Geanakoplos [1989, 2021], along with Samet [1990], use pos-

sibility correspondences to model bounded rationality and errors in infor-

mation processing, thereby extending the Agreement Theorem of Aumann

[1976] to non-partitional structures.

To introduce possibility correspondence, note first that each information

partition π of Ω defines a function, still denoted by π, mapping each ω ∈Ω
into the one cell π(ω) of π containing ω. This function has the following

properties by construction:

(1) for all ω ∈Ω, ω ∈ π(ω),

(2) for all ω,ω′,ω′′ ∈Ω, if ω′′ ∈ π(ω′) and ω′ ∈ π(ω), then ω′′ ∈ π(ω),

(3) for all ω,ω′ ∈Ω, π(ω)∩π(ω′) , ∅ implies π(ω) = π(ω′).

Then, a possibility correspondence is a function π from Ω to the power set

of Ω that merely satisfies (1) and (2).

Example 3. Suppose the state space Ω and partition πA of Alice are as fol-

lows: Ω = {a,b,c,d} and πA = {{a,b,c}, {d}}. The possibility correspondence

πB of Bob is given by: πB(a) = {a,b}, πB(b) = {b}, πB(c) = {b,c} and πB(d) = {d}.
Suppose that Alice and Bob share the same unique prior given by the uni-

form measure on Ω. Consider also the following disjoint convex sets (see,

Figure 1):

CA = {(1
3
,
1
3
,
1
3
,0)} and CB = conv{(1

2
,
1
2
,0,0), (0,1,0,0), (0,

1
2
,
1
2
,0)}.
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(1, 0, 0, 0) (0, 0, 1, 0)

(0, 1, 0, 0)

(1
2
, 1
2
, 0, 0) (0, 1

2
, 1
2
, 0)

(1
3
, 1
3
, 1
3
, 0)

CB

CA

Figure 1: A failure of Theorem 1 in the nonpartitional case

A subset E ⊆Ω is self-evident to every agent if, whenever E holds true, every

agent knows E, that is, if ω ∈ E implies πi(ω) ⊆ E, for all i ∈ S. Set E =

{a,b,c} and note that E is self-evident to every agent. Then, by a result of

Geanakoplos [1989, 2021], every subset A ⊆Ω such that E ⊆ A is commonly

known at every state in E. It is hence common knowledge at ω, for each

state ω ∈ E, that Alice’s posteriors fully satisfy CA and Bob’s posteriors fully

satisfy CB even though CA and CB are disjoint.

Example 3 highlights a fundamental qualitative breakdown that does

not stem specifically from ambiguity—since it relies on a single common

prior—but rather from the inherent logic of agreement in properties versus

agreement in values. While agreement in values holds in both partition-

based and possibility correspondence frameworks, agreement in properties

is preserved only under partitions.

4.2 Rectangularity

We now extend Theorem 1 to more general classes of properties of sets of

probabilities. To formalize this, we first define a property of sets of prob-

abilities as a subset C̃ of Q(Ω), where Q(Ω) represents the collection of all
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convex and closed prior sets Q ⊆ P (Ω). Notably, Theorem 1 remains ap-

plicable when it is common knowledge that each agent i’s posterior set

of probabilities satisfies property C̃i , provided that each C̃i is defined as

C̃i = {Q ∈ Q(Ω) | Q ⊆ Ci}, for some property Ci of probabilities. Within

this framework, Propositions 1 and 2 aim to extend Theorem 1 to broader

classes of properties C̃i of sets of probabilities.

Consider a closed and convex prior set Q ⊆ P (Ω) and a partition π of Ω.

We say that Q is π-rectangular if:∑
E∈π

p(E)qE , p ∈Q and qE ∈Q(·|E), for all E ∈ π

 ⊆ Q.

In this case, the two sets are equal. Rectangularity has been introduced

in the literature in various forms by Sarin and Wakker [1998], Epstein and

Schneider [2003], and Riedel [2004], and is known to characterize the prop-

erty of dynamic consistency. Intuitively, the rectangularity of a prior set Q

with respect to a partition π means that the posterior sets Q(·|E), E ∈ π, are

independent of each other. This independence implies that the posterior

sets do not provide a hedge against uncertainty.

Proposition 1. Consider ω ∈ Ω and a convex subset Ci ⊆ P (Ω), for all i ∈ S.
Suppose that it is common knowledge at ω that Qπi

i (ω) partially satisfies Ci , for
all i ∈ S. If Q := QA = QB and Q is πi-rectangular, for all i ∈ S, then we have
Qπ(ω) ∩ Ci , ∅, for all i ∈ S, where π(ω) ⊆ Ω denotes the unique cell in the
common finest coarsening of πA and πB that contains ω.

Theorem 1 extends the Agreement Theorem of Aumann [1976]. How-

ever, Example 1 demonstrates that this extension generally fails when full

satisfaction is replaced with partial satisfaction. In this context, Proposi-

tion 1 strengthens the assumptions of Theorem 1 by introducing a common

set of priors and requiring rectangularity with respect to the two informa-

tion partitions. This leads to a conclusion of weak compatibility between

the two properties. To understand this, note first that there always exists

a prior set Q′ ⊆ P (Ω) such that Q′ ∩ Ci , ∅, for all i ∈ S. Indeed, we can
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always set Q′ = [q1,q2] where qi ∈ Ci , for all i ∈ S. This means that any

two nonempty properties can be partially achieved by some set of probabil-

ities. However, Proposition 1 shows that we may even assume that a subset

Q′ ⊆ P (Ω) such that Q′∩Ci , ∅, for all i ∈ S, can be written as Q′ = Q[·|π(ω)],

ie. the set of posteriors that the two agents would have held conditional on

π(ω) achieves partially both CA and CB.

4.3 Union-consistency

Consider a closed and convex prior set Q ⊆ P (Ω) and a partition π of Ω.

A subset E ⊆ Ω is π-measurable if it is a (disjoint) union of cells of π. We

say that Q is union-consistent under π if, for all π-measurable E ⊆Ω and all

F ⊆Ω: ⋂
G∈π
G⊆E

Q(F|G) ⊆ Q(F|E).

To understand this definition, consider a π-measurable subset E ⊆Ω and a

subset F ⊆Ω. Then, E can be written as the disjoint union E = G1∪ . . .∪GN

of cells of π. Suppose α ∈ [0,1] is such that α ∈Q(F|Gn), for all n ∈ {1, . . . ,N }.
In other words, α is a possible probability value for F conditional on each

Gn. Under union-consistency, α must also be a possible probability value

for F conditional on the union of all Gn, ie. on E. For instance, every π-

rectangular subset of P (Ω) is also union-consistent under π.

Proposition 2. Consider ω ∈ Ω, E ⊆ Ω and a closed interval Ii in [0,1], for
all i ∈ S. Suppose {ω′ ∈Ω | Qπi

i (ω′)(E) = Ii} is common knowledge at ω, for all
i ∈ S. If QA = QB and Qi is union-consistent under πi , for all i ∈ S, then IA = IB.

To the best of our knowledge, Proposition 2 offers a novel extension of

the Agreement Theorem to multiple priors. We strengthen the assumptions

of Kajii and Ui [2005, 2009] and Carvajal and Correia-da-Silva [2013] by

assuming union-consistency and the equality of the prior probability sets.

In return, we derive a stronger conclusion than the mere nontrivial overlap

of IA and IB, specifically showing that IA = IB.
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We compare Proposition 2 to a strong version of the main result of Bach

and Cabessa [2023], a paper already discussed above. In their Theorem

2., they assume a form of mutual absolute continuity and derive the exact

equality of all posterior lexicographic beliefs. This is similar in spirit to

Proposition 2. Like them, we assume a form of mutual absolute continu-

ity: Indeed, given the positivity assumption of Subsection 2.1, the equality

Q := QA = QB ends up implying that each q ∈ Q puts a positive proba-

bility on each cell of each of πA and πB. But Proposition 2 resorts to the

additional condition of union-consistency to compensate for the loss of the

lexicographic structure they assume.

5 Application to trade

In this section, we examine the economic significance of Theorem 1 and

other findings in a context of trade à la Milgrom and Stokey [1982].

Suppose f a function from Ω to the reals R representing a possible trade
between Alice and Bob, ie. f (ω) describes the net payment that Alice re-

ceives from Bob at state ω ∈ Ω. For all i ∈ S, let xi ∈ R denote the initial
wealth of agent i and, for all ω ∈Ω, assume a binary relation ≿ωi on R

Ω rep-

resenting the preferences of agent i at state ω on state-contingent monetary

payoffs.

The trade f is Pareto-improving at some state ω ∈ Ω if xA + f ≻ωA xA and

xB− f ≻ωB xB. Then, we say that it is common knowledge at some ω ∈Ω that

agents are willing to trade f if the collection of states ω′ ∈ Ω such that f

is Pareto-improving at ω′ is common knowledge at ω. Finally, we say that

trade is never Pareto-optimal if there are no state ω and function f such

that it is common knowledge at some ω that agents are willing to trade f .

5.1 Maxmin and unanimity preferences

We say that preferences have a maxmin representation if, for all i ∈ S, there

exists a real-valued function ui defined on R and a closed and convex prior
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set Qi ⊆ P (Ω) such that, for all i ∈ S, ω ∈Ω and g,h ∈RΩ:

g ≻ωi h ⇐⇒ min
q∈Qπi

i (ω)
Eq[ui ◦ g] > min

q∈Qπi
i (ω)

Eq[ui ◦ h].

We say that preferences have a unanimity representation if, for all i ∈ S,

there exists a real-valued function ui defined on R and a closed and convex

prior set Qi ⊆ P (Ω) such that, for all i ∈ S, ω ∈Ω and g,h ∈RΩ:

g ≻ωi h ⇐⇒ Eq[ui ◦ g] > Eq[ui ◦ h], for all q ∈Qπi
i (ω).

Both maxmin and unanimity representations have been given early ax-

iomatic foundations in the decision-theoretic literature (see, for instance,

Gilboa and Schmeidler [1989], Bewley [1986, 2002], and Gilboa et al. [2010]).

It is also important to note that unanimity representations are inherently

incomplete. As a result, an agent who is unable to rank trading against

non-trading will default to maintaining the status quo, thereby refraining

from trade.

Consider next the properties CA,CB ⊆ P (Ω) of probabilities defined by

setting, for all p ∈ P (Ω):

p ∈ CA iff Ep[uA(xA + f )] > uA(xA) and p ∈ CB iff Ep[uB(xB − f )] > uB(xB).

Suppose maxmin or unanimity representations of preferences. Clearly,

the trade f is Pareto-improving at some state ω ∈ Ω if and only if Qπi
i (ω)

fully satisfies property Ci , for all i ∈ S. Then, we also have the following:

it is common knowledge at ω that agents are willing to trade f if and only

if it is common knowledge at ω that the agent i’s posteriors fully satisfy

property Ci , for all i ∈ S.

Finally, we have:

Proposition 3. Suppose ui is concave and increasing, for all i ∈ S. Then, prop-
erties CA and CB are incompatible.
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Proposition 4. Suppose that the pairs (ui ,Qi) provide a maxmin or unanimity
representation of preferences, for all i ∈ S. Suppose ui is concave and increasing,
for all i ∈ S, and QA ∩QB , ∅. Then, trade is never Pareto-optimal.

Proposition 4 leverages Theorem 1 to establish a version of the No Trade

Theorem of Milgrom and Stokey [1982] within a simplified setting that nev-

ertheless accounts for ambiguity. In doing so, it also relates to the work of

Billot et al. [2000], who analyze ex ante trade among maxmin agents who

are already fully insured and risk-averse. Their findings show that the ex-

istence of at least one prior common to all agents is sufficient to preclude

trade. Proposition 4 extends this insight by demonstrating that even with

the added element of asymmetric information, trade remains impossible ex
post.

5.2 Maxmax and justifiable preferences

We say that preferences have a maxmax representation if, for all i ∈ S, there

exists a real-valued function ui defined on R and a closed and convex prior

set Qi ⊆ P (Ω) such that, for all i ∈ S, ω ∈Ω and g,h ∈RΩ:

g ≻ωi h ⇐⇒ max
q∈Qπi

i (ω)
Eq[ui ◦ g] > max

q∈Qπi
i (ω)

Eq[ui ◦ h].

We say that preferences have a justifiable representation if, for all i ∈ S,

there exists a real-valued function ui defined on R and a closed and convex

prior set Qi ⊆ P (Ω) such that, for all i ∈ S, ω ∈Ω and g,h ∈RΩ:

g ≻ωi h ⇐⇒ Eq[ui ◦ g] > Eq[ui ◦ h], for some q ∈Qπi
i (ω).

Maxmax representations can be obtained axiomatically by replacing the ax-

iom of ambiguity aversion of Gilboa and Schmeidler [1989] with an axiom

of ambiguity seeking. As for foundations of justifiability representations,

see Lehrer and Teper [2011].

Suppose maxmax or justifiable representations. This time, the trade f is
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Pareto-improving in some state ω ∈ Ω if and only if some probabilities in

Qπi
i (ω) satisfy property Ci , for all i ∈ S. Therefore, it is common knowledge

at ω that agents are willing to trade f if and only if it is common knowledge

at ω that Qπi
i (ω) partially satisfy Ci , for all i ∈ S. Then, we can already antic-

ipate from Example 1 that Proposition 4 will fail in the context of maxmax

or justifiable preferences.

The next example confirms this conjecture.

Example 4. Consider the following state space Ω and partitions πA and πB:

Ω = {a,b,c,d,e, f }, πA = {{a,b}, {c,d}, {e}, {f }} and πB = {{b,d}, {a,c}, {e, f }}. Sup-

pose that the true state is given by ω = b and set E = {a,b,c,d}. Note that E is

the unique cell in the finest common coarsening of πA and πB that contains

ω. We then know from Aumann [1976] that an event A ⊆ Ω is common

knowledge at ω if and only if E ⊆ A. Suppose also that the two agents have

maxmax or justifiable preferences and have the same initial set of priors

Q consisting of all probability measures q on Ω such that q[πi(ω)] > 0, for

all i ∈ S and ω ∈ Ω. Take ui = Id, for all i ∈ S. In this context, consider

a trade of the form f = x − 1{b,c}. That is, Alice receives a sure amount of

x ∈ (0,1) from Bob and pays him 1 only if b or c obtains. Now, Alice is ac-

tually willing to make this trade because she has a posterior in QπA(ω) that

assigns a probability of 0 to {b}. But, furthermore, Alice would also be will-

ing to trade at each of states c and d because she would also have a posterior

in QπA(c) = QπA(d) assigning a probability of 0 to {c}. It is hence common

knowledge that Alice wants to trade f . Likewise, Bob is actually willing to

make the trade because he has a posterior in QπB(ω) that assigns a proba-

bility of 1 to {b}. Furthermore, Bob would also be willing to trade at each

of states a and c because he would also have a posterior in QπB(a) = QπB(c)

assigning a probability of 1 to {c}. Finally, it is here common knowledge

that Alice and Bob both want to trade.
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5.3 α-maxmin preferences

We finally revisit Example 4 in the context of α-maxmin preferences and

show that ambiguity seeking as captured by maxmax representations is not

a necessary ingredient for trade.

We say that preferences have an α-maxmin representation if, for all i ∈ S,

there exists αi ∈ [0,1], a real-valued function ui defined on R and a closed

and convex prior set Qi ⊆ P (Ω) such that, for all i ∈ S, ω ∈Ω and g,h ∈RΩ:

g ≻ωi h⇐⇒ V
ω
i (g) > V

ω
i (h),

where, for all k ∈RΩ:

V
ω
i (k) = αi min

q∈Qπi
i (ω)

Eq[ui ◦ k] + (1−αi) max
q∈Qπi

i (ω)
Eq[ui ◦ k].

For the axiomatic foundations of α-maxmin, see, for instance, Ghirardato

et al. [2004], Frick et al. [2022] and Hartmann [2023]. It is common to in-

terpret αi as agent i’s degree of ambiguity aversion. Specifically, αi = 1 cor-

responds to full ambiguity aversion, while αi = 0 represents full ambiguity

seeking. Intermediate values αi ∈ (0,1) reflect more nuanced attitudes to-

wards ambiguity. Example 4 below demonstrates that full ambiguity seek-

ing (αA = αB = 0) is not a necessary condition for trade. In fact, trade can

still occur when the overall ambiguity aversion remains sufficiently low,

meaning that αA +αB < 1.

Example 4. (cont.) In the same context as before, we introduce αi ∈ [0,1]

and suppose that (αi ,ui ,Q) provides an α-maxmin representation of the

preferences of agent i. Suppose αA +αB < 1 and take any x ∈ (0,1) such that

αA < x < 1 − αB. Now, Alice is actually willing to make this trade at ω = b

because we have: V ω
A (f ) = αA(x − 1) + (1−αA)x = x −αA > 0. Since the same

would hold true at each state in E, it is common knowledge at every state

in E that Alice wants to trade. Bob is likewise willing to make this trade at

ω = b because we have: V ω
B (−f ) = αB(−x)+(1−αB)(1−x) = 1−αB−x > 0. The

same would hold true at each state in E. It is therefore common knowledge
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at every state in E that both Alice and Bob want to trade.

6 Discussion

Multiple extensions of the Agreement Theorem of Aumann [1976] exist in

the literature, and we refer to the surveys of Bonanno and Nehring [1997]

and Ménager [2006], Ménager [2023]. To name just a few, Monderer and

Samet [1989] and Bach and Cabessa [2017] study versions of the Agree-

ment Theorem in cases where the assumption of common knowledge is re-

placed with weakers modalities of collective knowledge. In a similar spirit,

Geanakoplos [1989, 2021] and Samet [1990] weaken the structure of indi-

vidual knowledge. In contrast, Hellman [2013] weakens the assumption

of a common prior and shows that common knowledge of posteriors in a

case of "almost" common priors is only possible if the posteriors are "almost

equal". Bach and Perea [2013] and Tsakas [2018] modify the Bayesian up-

dating rule to include the possibility of updating on a null event. Other

works call the state-space approach to uncertainty into question. For in-

stance, Heifetz et al. [2013] study agreement in a context of unawareness

while Khrennikov and Basieva [2014] and Contreras-Tejada et al. [2021]

study agreement in a context of quantum uncertainty.

Of particular relevance to Section 5 are the No Trade like results à la

Milgrom and Stokey [1982]. Several authors extend the Aumann conclusion

of agreement into a No Trade condition which they characterize as equiv-

alent to the assumption of a common prior. (See, Morris [1994], Samet

[1998], Feinberg [2000] or Lehrer and Samet [2014].) Gizatulina and Hell-

man [2019] go even further by showing that a common prior is not neces-

sary to the No Trade result as long as one commits to common knowledge

of rationality.

Meanwhile, ambiguity is often rooted in the work of Keynes [1921] and

Knight [1921] and receives a new impetus in the Ellsberg [1961] paradox.

Schmeidler [1989] famously solves the paradox by appealing to nonadditive

probabilities, also known as capacities. But sets of probabilities are also
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often used. For instance, see Bewley [1986, 2002], Gilboa and Schmeidler

[1989], Ghirardato et al. [2004], Gilboa et al. [2010] and Lehrer and Teper

[2011].

The adequate way to update a set of probabilities upon information re-

mains a controversial issue as there are in general several equally plausi-

ble possibilities. Our choice of Full Bayes is motivated by two key reasons.

First, it is well understood from an axiomatic perspective, as shown by Pires

[2002] and Siniscalchi [2009]. Second, it has strong normative appeal due

to its connection with dynamic consistency. In the context of maxmin pref-

erences à la Gilboa and Schmeidler [1989], Epstein and Schneider [2003]

show that Full Bayes is necessary to ensure dynamic consistency. Further-

more, in the framework of unanimity representations developed by Bewley

[1986, 2002] and Gilboa et al. [2010], Full Bayes directly characterizes dy-

namic consistency.

Finally, Aumann’s Agreement Theorem in the context of multiple pri-

ors and Full Bayes is explored by Kajii and Ui [2005, 2009], and Carvajal

and Correia-da-Silva [2013]. The latter also study the alternative updating

rule known as maximum likelihood. They show by means of example that

agreement may fail in general and identify stronger conditions on what is

commonly known to retrieve agreement.

Other authors study agreement for beliefs in the form of capacities à la

Schmeidler [1989]. Zimper [2009] provides examples of disagreements due

only to differences in the updating rule agents use. Dominiak and Lefort

[2013] study specifically neo-additive capacities and impose the same up-

dating rule to all agents. Under these assumptions, they derive a form of

agreement. Meanwhile, Dominiak and Lefort [2013] study general capac-

ities and obtain again agreement by supposing that all information parti-

tions are unambiguous, a condition similar in spirit to rectangularity and

union-consistency here used in Propositions 1 and 2.
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7 Conclusion

This paper extends Aumann’s Agreement Theorem in two key directions:

incorporating ambiguity through multiple priors and relaxing the assump-

tion that agents observe perfectly each other’s posterior beliefs. By model-

ing beliefs as sets of probabilities and defining agreement in terms of com-

monly known properties of these sets, we establish a generalized Agree-

ment Theorem that subsumes Aumann’s original result and its extensions

by Kajii and Ui [2005, 2009] and Carvajal and Correia-da-Silva [2013].

Our main result highlights that agreement hinges on the mutual com-

patibility of the properties that agents’ posterior sets must satisfy. We fur-

ther explore the implications of this theorem in economic settings, notably

deriving a version of the No Trade Theorem of Milgrom and Stokey [1982]

under multiple priors. Additionally, we demonstrate how trade can emerge

under alternative preference structures, illustrating the broader applicabil-

ity of our framework.

While our analysis focuses on fully satisfied properties of posterior sets,

an important open question is whether the theorem can be extended to

more general forms of partial satisfaction. Future research could also exam-

ine alternative updating rules beyond Full Bayes and explore the role of in-

formation structures that deviate from standard partition models. These di-

rections offer promising avenues for deepening our understanding of agree-

ment under ambiguity and its consequences in economic theory.

Appendix

Proof of Theorem 1: Let E ⊆Ω be the one cell in the common finest coars-

ening of πi , i ∈ S, that contains ω. Since, by assumption, it is common

knowledge at ω that the agent i’s posteriors, ie. Qπi
i (ω), fully satisfy prop-

erty Ci , for all i ∈ S, we know from Aumann [1976] that E ⊆ {ω′ ∈ Ω |
Qπi

i (ω′) ⊆ Ci}, for all i ∈ S. Fix i ∈ S. Then, we can find finitely many

cells of πi , denoted by E1, . . . ,EN , whose disjoint union forms all of E. Con-
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sider p ∈ P (Ω) in the intersection of all Qi , i ∈ S. For all n ∈ {1, . . . ,N },
we have En ⊆ {ω′ ∈ Ω | Qπi

i (ω′) ⊆ Ci}. Then, take any ω′ ∈ En. It follows

that Qπi
i (ω′) ⊆ Ci with p(·|En) ∈ Qπi

i (ω′) by Full Bayes. Hence, we obtain

p(·|En) ∈ Ci . Furthermore, we have

p(·|E) =
N∑
n=1

p(En|E) · p(·|En).

Since Ci is convex, it follows that p(·|E) lies in Ci , and this is true for all

i ∈ S. □

Alternative proof of Theorem 1: In this alternative proof, we suppose for

simplicity that each prior pi of each agent i ∈ S has full support. For each

i ∈ S, define a function fi from the power set of Ω into {0,1} such that, for

all E ⊆Ω, we have: fi(E) = 1 iff Qi(·|E) ⊆ Ci . Thanks to the convexity of Ci ,

we obtain that, for all i ∈ S and disjoint E,F ⊆ Ω, if fi(E) = fi(F) = 1, then

fi(E∪F) = 1. In other words, fi preserves disjoint unions. The contraposition

of Rubinstein-Wolinsky’s (1990) Proposition 1 then yields the existence of

E ⊆ Ω such that fi(E) = 1 and hence Qi(·|E) ⊆ Ci , for all i ∈ S. Now, let

p ∈QA ∩QB. We must have p(·|E) ∈QA(·|E)∩QB(·|E) ⊆ CA ∩CB. □

Proof of Corollary 1: By construction, at every state ω′ ∈ π(ω), the posterior

sets QπA
A (ω′) and QπB

B (ω′) are included in CA(ω) and CB(ω), respectively. We

know from the characterization of common knowledge of Aumann [1976]

that it is common knowledge at ω that the two posterior sets QπA
A (ω) and

QπB
B (ω) are included in CA(ω) and CB(ω). The result then follows from The-

orem 1. □

Proof of Proposition 1: Set E = π(ω). It is sufficient to show that Qi(·|E)∩
Ci , ∅, for all i ∈ S, to conclude. Since it is common knowledge at ω that

Qπi
i (ω) partially satisfy property Ci , for all i ∈ S, we know from the char-

acterization of common knowledge of Aumann [1976] that E is included in

{ω′ ∈ Ω | Qπ
i (ω′)∩Ci , ∅}, for all i ∈ S. Consider now i ∈ S. We can find

finitely many cells of πi , denoted by E1, . . . ,EN whose disjoint union forms

all of E. Then, we must have Qi(·|En)∩Ci , ∅, for all n ∈ {1, . . . ,N }. (Indeed,
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take any ω′ ∈ En and observe that Qi(·|En) = Qπ
i (ω′) by Full Bayes so that

we have Qi(·|En)∩Ci = Qπ
i (ω′)∩Ci , ∅.) Consider then qn ∈ Qi(·|En)∩Ci ,

for all n ∈ {1, . . . ,N }. Let also EN+1, . . . ,Em denote the cells of πi not already

included in the family {E1, . . . ,EN }, and, for each n ∈ {N + 1, . . . ,M}, fix an

arbitrary qn ∈ Qi(·|En). Consider next: q =
∑M

n=1p(En)qn, where p ∈ Qi is

arbitrary. By πi-rectangularity, q is an element of Qi . It follows from Full

Bayes that q(·|E) is an element of Qi(·|E). But moreover we have: q(·|E) =∑N
n=1p(En|E)qn. Since Ci is convex and contains qn, for all n ∈ {1, . . . ,N } by

construction, it must also contain q(·|E). Hence, we obtain Qi(·|E)∩Ci , ∅.

□

Proof of Proposition 2: Let F ⊆ Ω be the one cell in the common finest

coarsening of πA and πB that contains ω. Since {ω′ ∈Ω | Qπi
i (ω′)(E) = Ii} is

common knowledge at ω, for all i ∈ S, we know from the characterization

of common knowledge of Aumann [1976] that F ⊆ {ω′ ∈Ω |Qπi
i (ω′)(E) = Ii},

for all i ∈ S. Since QA = QB, it is sufficient to show Qi(E|F) = Ii , for all i ∈ S
to obtain IA = IB and conclude. For i ∈ S, we can find finitely many cells of

πi , denoted by F1, . . . ,FN whose disjoint union forms all of F. Suppose first

α ∈ [0,1] is an element of Qi(E|F) and hence such that α = qi(E|F), for some

qi ∈ Qi satisfying qi(F) > 0. Hence, we obtain: α =
∑N

n=1 qi(Fn|F)qi(E|Fn).

Now, since Fn ⊆ F, we must have Qπi
i (ω′)(E) = Ii , for all ω′ ∈ Fn and n ∈

{1, . . . ,N }, and obtain Qi(E|Fn) = Ii and therefore qi(E|Fn) ∈ Ii . But then α is

an average of values all in the interval Ii and hence an element of Ii itself.

Suppose now that α ∈ Ii . For every n ∈ {1, . . . ,N }, we have Qπi
i (ω′)(E) = Ii , for

all ω′ ∈ Fn because Fn ⊆ F. Hence, we obtain Qi(E|Fn) = Ii , and there exists

qni ∈ Qi such that qni (E|Fn) = α. Then, by union-consistency under πi , there

exists qi ∈Qi such that qi(E|F) = α. Hence, α ∈Qi(E|F). □

Proof of Proposition 3: Suppose p ∈ CA. We then have Ep[uA(xA + f )] >

uA(xA). By the concavity of uA, we obtain uA[xA+Ep(f )] > uA(xA). Since uA is

increasing, we further have xA +Ep(f ) > xA and hence Ep(f ) > 0. Therefore,

we must have xB > xB −Ep(f ). Since uB is increasing, we obtain uB(xB) ≥
uB[xB −Ep(f )]. By the concavity of uB, we obtain uB(xB) ≥ Ep[uB(xB − f )].

Finally, it must be the p < CB. □
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Proof of Proposition 4: Fix f ∈ R
Ω and ω ∈ Ω. Let CA and CB be the

properties as in Proposition 3. Observe that CA and CB are convex. By

Proposition 3, they are also incompatible. Since QA∩QB , ∅ by assumption,

Theorem 1 implies that it cannot be common knowledge at ω that Qπi
i (ω)

fully satisfy property Ci , for all i ∈ S. Put differently, it cannot be common

knowledge at ω that agents are willing to trade f . Hence, trade is never

Pareto-optimal. □
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