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Abstract

Agricultural specialization maximizes land use efficiency but it also amplifies pest
pressure, thereby requiring heavy pesticide use. This paper evaluates the economic
benefits of reducing specialization to leverage natural pest control. We develop a model
in which the resilience of a farmer’s field is endogenous to the crop and pesticide choices
of neighboring farmers. We account for both within-crop and between-crop cross-field
externalities. Using global data on 40 crops and 41,820 counties, we estimate the
impact of these externalities on crop productivity with novel instrumental variables.
Our results show that maintaining a high diversity of crop species at the county level

significantly increases yields of major crops like maize, rice, and wheat.
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1 Introduction

This paper evaluates the economic benefits of reducing agricultural specialization to lever-
age natural pest control. Farmers face a complex dilemma, pondering two factors critical
to crop survival: abiotic factors, related to weather and soil conditions, and biotic factors,
related to the proliferation of pests. On one hand, specializing in the most suitable crop
enables to exploit the abiotic characteristics of the land, increasing yield returns. On the
other, specialization provides an ideal environment for pests to spread, decreasing yield
returns. The result is a dilemma between maximizing individual yields through mono-
culture and minimizing the risk of pest damages (Weitzman, 2000). Uncontrolled, pest
damage can be severe: yield losses for staple crops like maize, rice, and wheat could range
between 50% and 70% (Oerke, 2006).

The standard response to pest threats is the use of pesticides, which comes at a high
ecological cost (Tilman, 1999). Pesticides contaminate groundwater, degrade soils, and
drive biodiversity loss.! Pesticide use also imposes a social cost as biodiversity loss under-
mines key ecosystem services like pollination and natural pest control.” Additional costs
arise from the negative effects of degraded ecosystem services on human health (Frank,
2024; Frank and Sudarshan, 2024).

To limit the detrimental effects of pesticides, several countries have banned the most
dangerous substances and intend to limit the use of remaining chemicals through succes-
sive regulations. However, such restrictions may reduce yields, while global food demand
is projected to rise by 46% over the next three decades (Gouel and Guimbard, 2017). In
this context, reducing specialization and increasing crop diversity emerges as a promising
solution to balance the need for both environmental sustainability and high productiv-
ity. Experimental studies have demonstrated that diverse ecosystems are generally more
productive (Tilman, Polasky, and Lehman, 2005). Regarding agriculture, increasing crop
diversity has the potential to naturally reduce pest pressure. The presence of multiple crops
dilutes the availability of a pest’s preferred food source, making it harder for the pest to
proliferate (Pianka, 2011). In addition, crop diversity fosters a more complex ecosystem by

attracting pollinators and natural pest predators (Bianchi, Booij, and Tscharntke, 2006;

nsecticides are identified as a major factor in the global 1% annual decline of insect populations
(Van Klink et al., 2020), with losses reaching 76% near agricultural zones. In France, farmland bird
populations fell by 25% between 1989 and 2009, the largest drop across habitats (Jiguet et al., 2012).

2In the US, the insect-mediated services are valued at $57 billion annually (Losey, 2009).



Redlich, Martin, and Steffan-Dewenter, 2018; Noack et al., 2022; Strobl, 2022). However,
evidence on the economic viability of increasing crop diversity remains limited.

In this paper, we quantify global productivity gains from diversification. We combine
a probabilistic model for crop production with geo-spatial data on land use, using a novel
identification strategy. Our analysis thus contributes to the literature in two main ways.
The first contribution is to propose a new model of crop production with endogenous
biotic risk, stemming from pests. Building on the ecological approach of Weitzman (2000),
Brock and Xepapadeas (2003), and Bellora and Bourgeon (2019), we assume that crop
production is stochastic due to abiotic and biotic factors. Farmers choose which crop
to grow and how much pesticide to use to maximize expected profits. Crucially, biotic
risk depends not only on a farmer’s own decisions but also on the crop and pesticide
choices of neighboring farmers, generating cross-field biotic externalities. Accordingly, we
distinguish two theoretical mechanisms: specialization effects, characterized as within-crop
externalities following a change in a crop’s land share, and diversification or biodiversity
effects characterized as between-crop externalities following a change in the mix of other
crops. Specifically, a field’s survival probability decreases with the number of neighboring
fields growing the same crop (specialization) and increases with the diversity of other crops
species grown on neighboring fields (biodiversity) and pesticide use. Using this model, we
derive the equilibrium land distribution among crops based on individual farmers’ decisions
and a testable equation for crop productivity.

Our second contribution is to empirically estimate the specialization and biodiversity
effects on productivity. We operationalize these mechanisms at the county level: crop-
specific farmland shares capture specialization effects, while an index of crop diversity, the
Shannon index, which accounts for both crop richness and relative abundance, captures
biodiversity effects. We then address endogeneity, e.g., current productivity responding to
prior crop diversity, by implementing an identification strategy designed to recover causal
effects. Using this strategy, which we discuss below, we find that both specialization
and biodiversity effects significantly impact productivity. Moreover, analyzing 40 crops,
we find heterogeneity across major monoculture crops. A 1% increase in crop diversity
increases maize, rice, and wheat yields by 6%, 3.8% and 1.7% respectively. Finally, we
demonstrate the potential gains of diversification on production and revenue using sim-
ulations. First, we investigate the effects of reducing specialization in each county. We

redistribute 1% of the dominant crop’s area equally to all other cultivated crops and show



that the production of the dominant crop increases by 8% on average. In other words, the
reduction in production due to the decrease in cultivated area is more than offset by the
increase in productivity. Second, we simulate the rent-maximizing allocation of farmland,
demonstrating that revenue maximization is achieved by increasing crop diversity by an
average of 33% across counties.

Prior studies on the productivity-biodiversity relationship in agriculture focused on
wheat genetic diversity: planting fewer wheat varieties lowers yields in Canada (Carew,
Smith, and Grant, 2009), and a 1% increase in genetic diversity raised mean wheat yields by
0.11% in southern Italy (Di Falco and Chavas, 2006). Smale et al. (1998) find more nuanced
results: greater wheat genetic diversity increases yields in Pakistan’s rainfed areas but has
a small negative effect in irrigated regions. Expanding the scope, Bellora et al. (2018) use
satellite data from South Africa to show that higher crop diversity enhances resilience and
productivity across various crops. Focusing on northwestern France, Bareille and Dupraz
(2020) show that wheat and milk yields increase with farm-level crop diversity. Our
paper also complements empirical studies on the benefits of crop diversity on alternative
agricultural outcomes than crop yields, e.g. Di Falco and Chavas (2009) and Groom and
Pereira Fontes (2021) on cereal production in Ethiopia, Auffhammer and Carleton (2018)
on revenue resilience to droughts in India, and Renard and Tilman (2019) on the stability
of national harvests across 91 countries. Overall, the literature indicates a positive and
significant productive value of crop diversity, as demonstrated in the recent meta-analysis
of Bareille and Largier (2025). Spanning 52 studies, they find that a 1% increase in crop
biodiversity increases economic outcomes (including, but not limited to, crop yields) by
0.75% on average.

Our work distinguishes itself in several ways. First, we move beyond localized perspec-
tives by assembling a global dataset covering over 40,000 counties. To do so, we combine
geospatial data from FAO-GAEZ, on the potential suitability and productivity of land,
and Earthstat, on actual yields and harvested areas. Second, our analysis spans a larger
crop coverage that allows measuring between-crop diversity more consistently. Third, we
estimate crop-specific productivity gains, which allows to explore heterogeneity. Even-
tually, we propose a new identification strategy that leverages exogenous variations in
cropland patterns driven by local climate and soil conditions. Specifically, we use FAO-
GAEZ suitability scores to construct potential counterparts to actual farmland shares and

crop diversity, which serve as instrumental variables (IV). These exogenous measures min-



imize concerns about endogeneity since FAO-GAEZ scores derive from agronomic models
rather than statistical relationships.

The paper proceeds as follows. Section 2 presents the probabilistic model. Section
3.1 describes the data, while Section 3.2 outlines the empirical and identification strategy.
Section 4 presents the estimated parameters, which are also used to conduct simulation

exercises. Eventually, Section 5 concludes.

2 Theoretical Framework

2.1 General Setup

We consider a world of N countries, where each country n is divided into .J,, spatial units.
For convenience, these units are referred as counties, though the model can be applied at
other scales. Each county j € {1,..., J,} is subdivided into fields of equal size. Each field,
or unit of land, is cultivated by a farmer who grows a single crop using one unit of labor

and pesticides. Each crop k = {1,..., K} is treated as a homogeneous good.

2.1.1 Productivity

Productivity varies across crops and locations. The actual output of crop k£ per unit of
land and labor in area j will always be lower than or equal to its potential output. Factors
reducing production fall into two categories: abiotic (weather and soil conditions such
as temperature, light and precipitation) and biotic (pests and interactions among plants,
insects, and bacteria).

Farmers use pesticides to mitigate production losses due to biotic factors, but at a
cost to human health and the environment. Governments limit this externality by taxing
pesticide use with the environmental tax Tj.3 To maintain neutrality in government budget
and farmers’ income, we suppose that the tax policy is offset by a subsidy T Jk , equal to
the average tax payment in county j for crop k. Farmers choose pesticide intensity p to

maximize profits:

7r;-§ = mng[gjf]p? —Tip+ Tf —cj (1)

3For simplicity, we abstract away from the production and market dynamics of agrochemicals. Im-
plicitly, we assume that farmers are endowed with a large stock of agrochemicals that is not depleted by
farming activities, resulting in a zero market price.



with g}f the farmer’s stochastic production level, p? the price of crop k, and c; the cost of

labor and land in county j.

2.1.2 Crop Resilience

Adverse abiotic and biotic shocks occur independently across fields. However, biotic risks
depend not only on a farmer’s own decisions but also on the crop and pesticide choices
of neighboring farmers due to cross-field biotic externalities. The resilience of a field
growing crop k in county j is thus a function of the farmer’s pesticide intensity, p, as well
as the cross-field biotic effects within the county. Let @ZJ;»“ (p; Sj, pj) denote the resilience
function, with S; = {S;C :k =1,..., K} the distribution of fields between crops, and
pj = {,5? :k=1,..., K} the vector of average pesticide use. Sf is the share of fields
dedicated to crop k in county j, with SJ’-C >0and ), S;»“ =1, while ﬁf denotes the average

treatment applied to all fields growing crop k in j. Using this notation, (1) becomes

Ty = maxa; i (o; Sy, py)py — 1ip + T} = 5, (2)
where @” is the potential productivity of crop k in county j. Hence, the expected produc-

J
tivity z is given by

AR (3)

Assuming that adverse weather shocks and pest attacks occur independently, the re-

silience function is the product of three stochastic components, i.e.*

¢§C(p7 Sjvp]) = A?N?(p)Bf(S]»pJ% (4)

where Af < 1 is the probability that a field survives abiotic shocks, /L? (p) is the within-
field biotic probability, and B;-“(Sj, p;j) captures cross-field biotic effects. We specify the
within-field biotic probability as

() = exp | (k= p)?/20%] (5)

with ﬁf the unrestricted treatment level of pesticides and )\;? > 0 a measure of pests

4 Allowing for dependence between weather shocks and pest attacks would complicate the model without
changing our decomposition. We keep independence for tractability and control for potential dependence
empirically.



resistance, such that the larger )\g? the more effective the pesticides. By choosing pesticide
intensity p = /3;? , the farmer ensures that this probability equals one. However, this is not
the farmer’s optimal strategy when 7; > 0.

The cross-field biotic effects are defined as:

K
k — o=l A 0
BY(Sj,p5) = [] (o) exv [ ~hi(S0)] - (6)
(=1
The first term, ,uﬁ(ﬁﬁ), measures the fraction of fields sown with crop ¢ that survive direct
biotic factors. The second term, exp [—f%k(Sf )] , captures the biotic externalities from crop

{ to crop k, conditional on crop £ surviving. The sign and magnitude of these externalities

depend on ¢ and on its share in county j through function &g(+), specified below.

2.2 Market Equilibrium

We assume perfect competition, with farmers atomistic in county j. In Appendix A,
we show that the equilibrium pesticide use for crop &k is a dominant strategy, pg?* =
ﬁé? — /\ij /cj, regardless of S% and pj. Moreover, since at the land and labor market
equilibrium farmers’ expected profit is zero for any crop choice, expected gross revenue
of land is equalized across crops: pfzf = ¢; for all k. As a result, farmers play mixed
strategies over crop choices, yielding the equilibrium land allocation S;’ We also obtain

the following result:

Proposition 1. In equilibrium, actual productivity for crop k in area j is given by

_ abexp {— 5, gk(sg.*)}
Zj* = tk tf ’ (7)
J HZ J

with a;? = dé‘?A;? and t? = exp [)\;?(Tj/cj)z/Q] .
Proof. See Appendix A.1.

Actual productivity, as defined in (7), depends on the potential productivity, accounting
for abiotic risk, af, cross-field effects, exp [— Do f%k(Sf*) , and pest policy effects tf and
I tf. The first pest policy effect, t;? =1/ uf( [);?*), corresponds to the inverse of the survival

55’;-“* refers both to the probability that a farmer in j chooses crop k and to the equilibrium share of
that crop in j.



probability of crops to direct biotic factors, while the second policy effect arises from cross-
field externalities. Thus, an increase in the environmental tax 7; reduces pesticide use in
all fields, thereby diminishing the positive cross-field externalities of pesticides on k’s

survival. This is reflected by an increase in té? and all tﬁ in the denominator of (7).

2.3 Cross-Field Biotic Effects

To further investigate the model’s predictions, we assume a functional form that decom-

poses the cross-field biotic term in Eq. 6, 4(+), into within- and between-crop effects:

Assumption 1 (Decomposition of cross-field biotic externalities). For crop k,
f%k(S]k) = /@01@5’? (within-crop effects),

and, for all £ # k

1 1 S5 S5
/%k(Sf) ==Kk | T In (K — 1) 1 —ij In 1 —jS;? (between-crop effects).

Under this assumption, we have

K
B} (S, ps) = | [ #5(55) exp {—/ﬁiong]-§ — K <ﬁ - ijﬂ ;
(=1
with
HY = Z Sf 1 Sf (8)
i=" g %
0k 1- Sj 1- Sj

the leave-one-out Shannon index, which measures the diversity of crops ¢ # k, and H =
In(K — 1) its maximum. The difference H — H ]k measures the gap between maximum
diversity—when all other existing crops are equally represented—and actual diversity.
This specification aligns with standard ecological diversity measures and ensures that

B;?(Sj,pj) < 1. Replacing, (7) becomes

L abexp [—rouSE — wy(H — H)|
J [T J

This specification allows us to distinguish two biotic externalities affecting crop k’s pro-

ductivity. The first externality is a specialization effect, captured by the within-crop



coefficient kg, which is linked to an increase in the crop’s land share. The second exter-
nality is a biodiversity effect, captured by the between-crop coeflicient ky, which is linked
to a decrease in the diversity of non-k crops relative to the maximum level. Both effects
are expected to reduce productivity: higher specialization increases pest pressure, while

lower diversity weakens area j’s ecosystem, reducing natural pest control.’

2.4 Rent-Maximizing Equilibrium

So far, we analyzed allocation choices made by atomistic farmers who do not coordinate.
We now consider a benevolent social planner who aims to determine the land allocation
S; = {S;f }le that maximizes total agricultural revenues in county j, taking into account

cross-field externalities. The planner solves
max{Z:plC kSk ZSk }
Our second proposition follows from this maximization problem:

Proposition 2. To maximize total agricultural revenues, the share of crop k in area j

must satisfy

-3

pZ

e 14— |22 -1
prz koo \ phzt
ZZEIC KOZpZ ek 777

‘.0 l l 14
p;z; keS; [ OH; B OH;
Ty A (-]

Z: KR
tekcmex Pi %5 fom

Proof. See Appendix A.3.

3 From Model to Data: Empirical Implementation

This section outlines our empirical strategy for estimating the model predictions regarding

specialization and biodiversity effects. We first describe the data sources and variable

5The corresponding equilibrium farmland shares are derived in Appendix A.2.



construction, including measures of actual and potential productivity. We then link the

model theoretical predictions to the data and discuss the identification strategy.

3.1 Data

We use two types of data: (i) potential measures of land suitability and productivity, and
(ii) actual measures of yields and harvested areas. All measures are crop-specific and
at a S-arc-minute resolution (grid cells equivalent to 10kmx10km at the equator). We
map cells to countries using the Global Administrative Areas Database (GDAM v4.0),
and then aggregate cell measures at the county level j, defined as the country’s second-
level administrative unit. This aggregation trades off two considerations: minimizing
measurement error, because cell-level measures are sometimes downscaled estimates of
larger administrative units and can be noisy, and analyzing at a scale relevant for pest
spread, which argues against overly large areas. Overall, our sample covers 41,820 counties,

148 countries and 40 crops. Appendix Tables B1 and B2 list the crops and countries.

3.1.1 Potential Measures

We source potential measures from version 4.0 of the Global Agro-Ecological Zoning
(GAEZ) project (Fischer et al., 2021). GAEZ has the advantage of estimating yields
from an agronomic model, which assesses the suitability of each cell for each crop based
on edaphic and climatic resources, matched to crop-specific requirements. As a result, we
obtain exogenous productivity measures for each cell and crop, independent of the actual

land use (e.g., the cell being cultivated with another crop).

Suitability. Cells are assigned to a suitability class based on land quality: very suitable,
suitable, moderately suitable, marginally suitable, very marginally suitable and not suitable.
A normalized suitability index ranging from 0 to 10,000 is then computed for each cell,
indicating the proportion of maximum yields that can be achieved. Cells corresponding
to urban areas, protected areas and areas of high biodiversity are identified and assigned

a suitability index of 0 for all crops.

10



Productivity. Based on the suitability predictions, potential productivity (t/ha) is as-
sessed for various combinations of input levels (high or low)” and sources of water supply
(rainfed or irrigated). Among the available combinations, we select the potential produc-
tion density variable for a high level of inputs® and rainfed water source.” This measure
averages potential production across the entire cell, regardless of the actual percentage
of cultivated area. Following Costinot, Donaldson, and Smith (2016), when FAO-GAEZ
distinguishes between species (e.g., dryland rice vs. wetland rice), but only aggregate
information is available in the actual measures (e.g., rice), we use the maximum value

between the two species.

3.1.2 Actual Measures

We use year-2000 measures of actual production (metric tons, t), harvested area (hectares,
ha), and yields (t/ha) from the EarthStat database (Monfreda, Ramankutty, and Foley,
2008). These variables are observed or estimated by combining high-resolution data on
cultivated areas with averages of agricultural census and survey statistics carried out
between 1997 and 2003. To match weight units between actual and potential measures,
we apply crop-specific wet-to-dry conversion factors provided by FAO-GAEZ.

The agricultural sector shows a high degree of specialization (see Appendix Tables B1
and B2). Ten crops account for nearly 79% of the global harvested area, and 50 countries
represent over 87% of total crop production. In some cases, actual yields exceed potential
yields (see Appendix Figure C1). This discrepancy may arise from reporting errors in
EarthStat or inaccuracies in FAO-GAEZ’s agronomic predictions.' We address these

issues in the estimation below.

3.2 Estimation and Identification Strategy
3.2.1 Estimating Equation

Building on the model, we estimate the log form of (9):

"A high level represents advanced land management and market-oriented agriculture, and a low level
represents traditional land management and subsistence agriculture.

8 As potential yields are by definition greater than or equal to actual yields in our model, we prefer to
select the highest values available for potential yields.

9Data for irrigated potential yields is limited, excluding major crops like rice and maize.

100ne limitation of the potential productivity measure is that it does not account for genetically modified
organisms and irrigation.

11



lnzé-C = lna? - lﬁngf — kg (H — H]k) - lnt? - Zlntﬁ,
)4

where county j is the spatial unit of observation. Because information on pesticide regula-
tions and pest resistance is imperfect, we proxy té? with countryxcrop fixed effects, which
absorb country—crop determinants of pesticide use. This rich set of fixed effects captures
factors such as nationally set pesticide taxes, crop-specific pest resistance, and any coun-
try—crop co-movement between climate and pest pressure. Eventually, we estimate the

following equation:

lnz;'»C = lnaf + ﬂoka + ﬁkHJk + Ak + ef. (11)

For each crop k, we regress log actual productivity, In zf, on: (i) log potential pro-

ductivity, In af (abiotic factors), (ii) the crop k’s farmland share, S¥

) which represents

the share of county j’s cultivated area devoted to crop k (specialization effects), (iii) the
county crop diversity index, H jk (biodiversity effects)'!, and (iv) country i fixed effects,
’yf. € is the usual error term. As potential yields af are estimated by GAEZ under the
assumption of advanced land management everywhere, we expect oy < 1. Consistent with
the model, we also expect Sor, < 0 and S > 0 for all k, reflecting negative specialization
effects and positive biodiversity effects. Finally, because counties differ in size, we aug-
ment specification (11) with total agricultural area, L;, ensuring that the estimated effect

of farmland shares S]’? is comparable across counties.

3.2.2 Measuring Crop Diversity

Mean Proportional Abundance. As defined in the theoretical section, we measure
crop diversity by using the (leave-one-out) Shannon index H. ]k (see Eq. 8). The standard
index is widely used in the ecological literature as a measure of the mean proportional
abundance of crops in in a location.'” It captures both crop richness and relative abun-
dance (Shannon, 1948). Higher values indicate greater farmland heterogeneity, with a

maximum value equals to In K when all crops are grown in equal proportions.

1 As H is constant across all observations, we omit it from the regression.
12The standard index is defined as — f:l S£1n(S%).

12



Effective Diversity. To provide a more intuitive measure of biodiversity than the mean

proportional abundance, we use Hill’s numbers, known as the effective number of crops:

K 1/(1—q)
Dj = IDSf)‘I] (12)
(=1

where ¢ > 0 determines the sensitivity of the biodiversity measure to the relative abun-
dance of crops. The index Dg represents biodiversity by considering both the total number
of crops and their relative abundance. In other words, D;’» represents the number of equally
abundant crops needed to match the observed mean proportional abundance in country
j, where crops may not be equally distributed. As ¢ — 1, Hill’s numbers corresponds to
the exponential of the Shannon index. Consequently, 55 in our estimated equation (11)
can be interpreted as the elasticity of the actual yield of crop k with respect to effective
diversity in the other crops, derived from the leave-one-out Shannon index H ]k

We compute the effective number of crops (12) for all counties in our sample. Figure 1
shows that counties around the world are highly specialized. On average, the potential
effective number of crops is 4.5 (Panel A), while the observed number of crops grown is

17.2 (Panel B), reflecting the dominance of a few crops.

3.2.3 Accounting for Endogeneity

In practice, crop diversity and farmland shares may be endogenous to actual yields. First,
since actual yields in our data are averaged over a six-year period, productivity in a given
year may influence crop diversity in subsequent years. For example, improved wheat
yields could encourage specialization in wheat, increasing its farmland share and reducing
overall diversity. In this case, OLS estimates are likely downward-biased in absolute terms,
for both specialization and biodiversity effects. Second, omitted factors unrelated to soil
and climate conditions may influence both agricultural productivity and diversity. For
instance, counties with better access to pesticide markets might exhibit higher yields and
greater specialization, leading to upward-biased OLS estimates.

Our identification strategy leverages FAO-GAEZ suitability data to construct novel
instrumental variables for farmland shares and crop diversity. Because suitability is derived
from agronomic models and lab experiments rather than observed crop patterns, these

instruments are likely to satisfy the exclusion restriction.

13
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Figure 1: Effective crop diversity (Hill’s numbers)

Notes: Actual effective number of crops (1a) and potential effective number of crops (1b) at the county
level. Computed based on FAO-GAEZ, Earthstat.

14



Instruments for Farmland Shares. We consider two instruments for S;? , the share of
county j’s cultivated area devoted to crop k. The first instrument is the average share of
land assessed by FAO-GAEZ as very suitable (when farmers can reach 80 to 100% of the
maximum attainable yield for crop k) or suitable (60 to 80%). This variable is provided
by FAO-GAEZ. The second instrument is built from our estimation of potential farmland
share. In each county j, we compute the potential farmland share of crop k, Sjk, as the

ratio of the suitability of crop k, SI? to the sum of the suitability of all crops:'*

k
ck _ SIj

J K £

If land allocation prioritizes crops whose growth requirements align most effectively with
local climate and soil characteristics, the two instruments should satisfy the relevance
condition. Reassuringly, regressing actual shares on potential shares across all crops and
counties reveals a positive and significant coefficient of value 0.770. We also plot our
measure of potential against actual farmland shares for six major crops in Appendix

Figure C2 and observe positive correlations.

Instrument for Crop Diversity. We construct an index of potential crop diversity

using our estimated potential shares S’Jk :

K
Hy =-> Sn(S).
=1

Exponentiating gives the corresponding potential Hill’s numbers ([?Jl), displayed in Figure
1b. We also compute the leave-out-one version of the potential Shannon index for each

crop k, which serves as an instrument for its actual counterpart:

~ St St
Hk —_ — Z j~ ln ( j~ .
J — ok _ Ok
L5 \1-5;
The relevance of the instrument is straightforward: counties whose natural conditions are
suitable to a very limited number of crops are more likely to specialize in these crops,

resulting in lower diversity indices. This pattern matches our data, where actual and

potential diversity measures are positively and significantly correlated.'*

13Such index of relative suitability is also used in Berman et al. (2023) to construct price indexes.
1 As shown in Appendix Figure C3, this result holds for all but one continent, South America, where
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Table 1: Parameters estimates

Dependent variable: In (Actual Yields)
(1) ) ®3) (4) (%) (6)
In (Potential Yields) 0.098™** 0.004™** 0.007"** 0.113™** 0.049"** 0.035™**
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01)
Farmland Shares 0.372"** 0.874"** 0.811"** -10.254"** -5.241"* -4.628""*
(0.01) (0.01) (0.81) (0.56) (1.14) (0.81)
Crop Diversity 0.105*** -0.501*** -0.526"** 1.397*** 5.272%** 4.272%**
(0.01) (0.01) (1.28) (0.10) (1.57) (1.28)
Method OLS OLS OLS I\Y v v
CountryxCrop FE Yes Yes Yes Yes Yes Yes
County FE No Yes Yes No Yes Yes
Pasture incl. No No Yes No No Yes
K.-P. F-stat® - - - 233.3 10.7 27.8
Observations 589,958 589,958 589,958 589,958 589,958 589,958

Notes: Standard errors, robust to heteroskedasticity and clustering at the county level, are in parentheses
with *, **, and *** denoting significance at the 1, 5, and 10% levels. Crop diversity is measured using
the leave-one-out Shannon index, and specialization with farmland shares. Both instruments for farmland
shares are used in IV regressions. In all columns but (1) and (4), we add county fixed effects. In the third
and sixth columns, pasture area is included when farmland shares and leave-one-out Shannon indexes are
computed based on FAO-GAEZ, Earthstat. “K.-P. F-stat denotes Kleibergen-Paap F-stat.

Identifying Assumptions. We require three assumptions to identify specialization and
biodiversity effects. Conditional on potential yields and country fixed effects: (1) there
must be sufficient within-country variation in farmland shares and diversity; (2) natural
conditions must explain variations in farmland shares and diversity (relevance assumption);
and (3) potential farmland shares and diversity must not have a direct effect on yields

(exclusion restriction).

4 Empirical Results

4.1 Aggregate Estimates

We first estimate Eq. 11 assuming that cross-field biotic externalities are the same for all

crops, that is Sor = fy and B, = B for all k. Results are reported in Table 1. Columns

the correlation is statistically significant but surprisingly negative.
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(1)-(3) display ordinary least squares (OLS) estimates on potential yields (), farmland
shares (f3p), and crop diversity (leave-one-out Shannon index) (3). Columns (4)-(6) report
the instrumental variable (IV) estimates. All specifications include countryxcrop fixed
effects (FE) and cluster standard errors are the county level. Columns (2), (3), (5), and
(6) add county fixed effects. Finally, columns (3) and (6) include pasture area in the
computation of farmland shares and leave-one-out Shannon indexes. Instrument strength
is not a concern as the Kleibergen-Paap Wald F-statistics vary between 10.7 and 233.3.
As expected, actual yields are quite inelastic to potential yields, with an elasticity below
0.2 across all columns.'® This reflects the fact that many farmers do not use the advanced
technologies assumed by FAO-GAEZ when predicting potential yields. However, the co-
efficient always remains positive and statistically significant, indicating that agronomic
potential retains predictive power for realized yields despite management constraints.
OLS coefficients on farmland shares and Shannon index (except in column 1) have the
opposite of the expected sign. By contrast, the IV estimates have the expected sign, con-
firming that OLS estimates are downward biased even with county fixed effects. Shannon
indexes capture biodiversity or between-crop effects. A 1% increase in effective diver-
sity is associated with a 1.4-5.3% increase in actual yields (columns 4-6), consistent with
Auffhammer and Carleton (2018).'° Farmland shares capture specialization or within-
crop externalities. A 1 standard deviation increase (= 0.14 in our sample) reduces ac-
tual yields by 47.7 to 76.7%, comparable in magnitude to global potential pest losses in
Oerke (2006). Finally, including pasture slightly attenuates the magnitude of farmland
shares and Shannon index estimates, likely because pasture constitutes a large share of

agricultural land in many counties.

4.2 Crop-specific Estimates

We next compute crop-specific estimates to look at the heterogeneity of cross-field exter-
nalities. Crops face different potential pest pressures (Oerke, 2006), and may therefore
respond heterogeneously to changes in crop patterns. We estimate Eq. (11) for each of

the 40 crops in our sample, using both OLS and IV. As we have more than one instru-

15 Costinot and Donaldson (2012) found a coefficient of 0.2 in a simple regression of the log of actual
output on the log of predicted output, which they computed based on FAO-GAEZ data.

By comparison, the OLS elasticity (without county fixed effects) is 0.1, closer to
Di Falco and Chavas (2006) on wheat genetic diversity: a 1% increase in genetic diversity raised
mean wheat yields by 0.11% in southern Italy.

17



carrot 7 coffee -
flax = *> . millet -]
drypea | - b oilpalm =
phaseolusbean = cowpea
sugarbeet | . sugarcane -
tomato - cocoa ©
sweetpotato | 4 banana - Ofe
rapeseed - b alfalfa
cotton = A 4 d sweetpotato
sorghum | * buckwheat
tea 4 sunflower
millet = onion -
groundnut - 4 phaseolusbean - 2
banana - * barley ] 0
oilpalm - 4 coconut *
rubber | 2 g whitepotato *
rice 2 d pigeonpea
coconut * tomato
maize | * carrot 7]
yam = *p cotton &
barley = <+ yam | 2 4
cassava | <3 sorghum &
wheat = 4 rubber *
olive | A rapeseed |
sunflower | 3 drypea ] *
pigeonpea - ¢ wheat - *
alfalfa | < cabbage |
whitepotato groundnut
sugarcane | k> chickpea
soybean - flax - *
oat < tea
cowpea oat *
rye 7 q O cassava ] g
cocoa | P& soybean -
tobacco = d olive 7
coffee rice
chickpea rye |
onion -] > * maize
cabbage | o tobacco -
buckwheat - sugarbeet
T T T T T T T T T T T
4125 100 -75 50 25 0 25 50 75 100 12
v oLs v oLs
p<005 & . p<0.05 ¢ o
p>005 < o p>005 & o
weak weak

(a) Specialization effects (Box) (b) Biodiversity effects ()

Figure 2: Estimates of crop-specific biotic externalities

Notes: The figures display estimates from OLS and IV regressions of Eq. (11), controlling for total
harvested area in the county. Instruments used are described in Subsection 3.2.3. Standards errors are
clustered at the country level and robust to heteroskedasticity. The notation “weak” refers to weak
instrumentation, i.e., when the Kleibergen-Papp rank Wald F-statistic is below 10. Computed based on
FAO-GAEZ, Earthstat.

ment for farmland shares, we allow for flexibility and select, for each crop, the instrument
or combination of instruments that yields the highest Kleibergen-Paap Wald F-statistics.
These statistics are reported in Appendix C4. Overall, 21 crops out of 40 exceed the
usual rule-of-thumb of 10. Estimates for within-crop (Sox) and between-crop (8) effects
are displayed in Fig. 2a and 2b.

As for aggregate results, OLS estimates of specialization effects (within-crop, Sok)
appear upward biased in most cases. For 24 of the 40 crops, the estimates even contradict

our theoretical prediction that a higher share of farmland should reduce yields due to
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greater pest pressure (Sor < 0). With IV, only 3 crops contradict this prediction. More
importantly, IV estimates are significantly negative for 13 (accounting only for strong
instruments) to 22 crops. Notably, major crops such as wheat, maize, rice and cotton
exhibit non-negligible specialization externalities, despite being predominantly grown in
monocultures. We also find substantial heterogeneity across crops: a 1 standard deviation
(s.d.) increase in farmland share s associated with productivity declines exceeding 80%
for maize (s.d. of 0.24) and rice (s.d. of 0.23), and about 33% for wheat (s.d. of 0.21).
The smallest negative effect is for yam (7.81%, s.d. of 0.02), consistent with lower pest
pressure for an underground crop.'”

Most estimates of biodiversity effects (x), whether by OLS or IV, are in line with our
predictions. The only statistically significant exceptions are IV coefficients for oil palm
(weak IV) and sugarcane. When instrumenting, crop diversity has a significant, positive
and strong effect on the yields of 13 crops (22 when including weak IV). The elasticities of
yields with respect to effective diversity (Hill’s numbers) are higher than OLS estimates
and vary between 0.45 (barley) and 6.89 (sugar beet, but weak IV). These results indicate
heterogeneity in the way crops benefit from the richness and relative abundance of other
species within a county. We find that major crops are particularly sensitive to between-
crop externalities: a 1% increase in effective diversity results in a productivity increase of

5.95% for maize, 3.76% for rice and 1.61% for wheat.

4.3 Simulations

Provided with the estimated cross-field parameters, we simulate different land allocations.
First, we investigate the effects of marginally reducing dominance in each county. More
precisely, we simulate a 1% decrease in the dominant crop’s area that we redistribute
equally to all other crops already grown. This counterfactual scenario assesses the effect
of diversification on production. Second, we solve numerically for Eq. (10) to obtain the

rent-maximizing farmland distribution.

Our model does not account for differences in land quality within counties. Note, however, that
negative estimates may also partly reflect the fact that expanding a crop’s cultivated area can involve
bringing less productive land into use.
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Table 2: Mean effects of redistributing 1% of the dominant crop’s area

Counties where crop dominates All counties
Crop
P S Zs Zm P S Zs Zu

Alfalfa 0.99 099 1.00 1.00 3.19 3.19 1.00 1.00
Banana 1.04  0.99 1.05 1.00 8.05 8.07 1.00 1.00
Barley 1.02  0.99 1.02 1.01 4.30 4.24 1.00 1.01
Buckwheat 0.75 099  0.76 1.00 3.20 3.09 1.04 1.00
Cabbage 0.78 099 0.78 1.01 5.31 4.88 1.02 1.04
Carrot 1.66  0.99 1.66 1.02 90.86 93.93 0.96 1.02
Cassava 1.09 0.99 1.02 1.09 23.47 22.04 1.00 1.07
Chickpea 090 099 0.88 1.03 174.71 165.37 1.01 1.05
Cocoa 095 099 095 1.00 5.52 5.51 1.00 1.00
Coconut 1.04  0.99 1.04 1.01 5.10 5.02 1.00 1.01
Coffee 0.99 099 1.00 1.00 5.34 5.34 1.00 1.00
Cotton 1.09  0.99 1.11 1.00 31.31 31.53 1.00 1.00
Cow pea 0.99 0.99 1.00 1.00 3.81 3.81 1.00 1.00
Dry pea 1.07  0.99 1.07 1.01 6.14 5.92 0.99 1.03
Flax . . . . 47.94 46.51 0.99 1.03
Groundnut 1.06  0.99 1.07 1.00 46.19 46.44 1.00 1.00
Maize 2.25  0.99 1.04 2.15 2.64 1.94 1.01 1.46
Millet 1.06  0.99 1.07 1.00 9.58 9.62 1.00 1.00
Oat 1.27  0.99 1.00 1.28 2.41 2.27 1.00 1.06
Oil palm 0.98 0.99 1.04 0.95 6.90 7.30 1.00  0.96
Olive 0.99 0.99 1.00 1.00 1226.92 1226.92 1.00 1.00
Onion 0.84 099 0.84 1.00 37.85 37.17 1.01 1.00
Phaseolus bean 1.15 0.99 1.16 1.00 378.71 381.62 0.99 1.00
Pigeon pea . . . . 3.73 3.73 1.00 1.00
Rapeseed 1.12 0.99 1.09 1.03 8.29 8.02 0.99 1.04
Rice 1.28  0.99 1.05 1.23 189.31 172.59 1.01 1.13
Rubber 1.05  0.99 1.04 1.02 8.96 8.77 1.00 1.04
Rye 1.10  0.99 1.00 1.11 11.31 9.86 1.00 1.09
Sorghum 1.07  0.99 1.08 1.00 4.09 4.11 1.00 1.00
Soybean 1.13 099 0.98 1.17 12.65 11.21 1.00 1.08
Sugar beet 1.15 0.99 1.10 1.05 43.95 38.25 0.99 1.15
Sugarcane 0.89 099 0.98 0.92 683.81 707.39 1.00 0.95
Sunflower 0.99 0.99 1.00 1.00 16.47 16.47 1.00 1.00
Sweet potato 1.06  0.99 1.07 1.00 160.28 161.51 0.99 1.00
Tea 1.05  0.99 1.00 1.06 21.88 20.44 1.00 1.06
Tobacco 1.13 099 0.95 1.21 104.93 90.62 1.00 1.15
Tomato 1.15  0.99 1.16 1.00 45.34 45.99 0.99 1.00
Wheat 1.06  0.99 1.01 1.06 2.17 2.05 1.00 1.05
White potato 1.00 0.99 1.00 1.01 25.11 24.89 1.00 1.01
Yam 1.01 0.99 1.01 1.01 2.33 2.27 1.00 1.03
Total 1.08  0.99 1.03 1.06 86.85 86.25 1.00 1.04

Notes: Simulation results are not available for flax and phaseolus bean in the first three columns as there
exist no county in which these crops dominate. Computed based on FAO-GAEZ, Earthstat.
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4.3.1 Marginal Farmland Redistribution

Decomposition of the Production Effect. For each crop k, let S* denote the

new

8

new farmland share and H*  the new leave-one-out Shannon index after redistribution.’

new

Keeping input prices and pests resistance constant, our model predicts that new expected

k

yields z.,, is given by

zﬁew = zk exp [K’Ok(szew - Sk) + K’k(HSew - Hk):| )

for all £ € IC, where K is the set of crops with strictly positive production under market

equilibrium. We thus only allow for changes at the intensive margin. The total variation

in expected productivity can therefore be broken down into the product of variations due

to changes in farmland share, 25 = exp [kok(SE,,,
k

2 = exp [/@k(H k —H k)} Similarly, the variation in production breaks down as

— Sk)], and changes in crop diversity,

new
PF =2k x 2 x S

with 2% = 2%_/2* denotes the variation in variable x. Theoretically, the effect of redistri-
bution on P is ambiguous and depends on the parameters kg, and k. We calibrate these
using our estimates from Fig. 2. By construction, 8 = —ki and Bpp = —kor. When an

estimate is not statistically significant, we set the corresponding parameter to zero.

Predictions. Table 2 reports mean production changes and their decomposition. Re-
stricting to counties where the crop dominates, i.e. where it has a larger farmland share
than all other crops, average production increases by 8% after redistribution. This im-
plies that the drop in production associated with the reduction in harvested area (-1%)
is more than offset by an increase in productivity (+9%). The decomposition indicates
that most of the increase stems from the diversity component (+6%), with additional
gains from reduced specialization (+3%). Maize seems to benefit particularly from the
redistribution: a 1% reduction in its harvested area translates on average into a doubling
of its yields. Looking at average variations across all counties, production is expected to
increase by a factor of 86.85, of which 99.5% is explained by variations in harvested area.

The average is therefore driven up by crops that previously accounted for only a small

BFor clarity, county subscripts are omitted; the unit of observation is unchanged.
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Figure 3: Simulated change in the Shannon index after the rent-maximizing farmland
distribution is implemented

Notes: The figures display the simulated percentage change in the Shannon index after the rent-maximizing
distribution is implemented for a subsample of 84 French counties. We reallocate farmland within a group
of eight cereal and oil crops (barley, maize, oat, rapeseed, sorghum, soybean, sunflower and wheat), keeping
other crops’ area constant. “NA” values are attributed to counties where at least one of the eight crops
considered was not grown initially. In Fig. 3b, we solve for rent-maximizing shares considering that x; = 0
for all crops k, i.e., there are no between-crop externalities. Computed based on FAO-GAEZ, Earthstat.

proportion of the agricultural area. The remainder of the effect reflects productivity gains
due to greater diversity. Overall, simulations highlight the large potential for reallocating

farmland towards more diversified patterns, especially for dominant crops.

4.3.2 Rent-Maximizing Farmland Allocation

As a second simulation exercise, we consider a benevolent social planner who maximizes
agricultural revenue, as described in Subsection 2.4. For each county and crop, we solve
numerically for the rent-maximizing farmland sharesfrom Eq. (10), parameterized with our
estimates from Fig. 2. As an illustration, we focus on a subsample of 84 French counties
and eight crops commonly grown in monocultures: barley, maize, oat, rapeseed, sorghum,
soybean, sunflower and wheat. We only allow for reallocation of land area between these
crops and keep other crops’ area constant. After solving for the eight rent-maximizing
farmland shares in each county, we calculate the resulting Shannon index. This allows

us to study how the social planner’s allocation compares to the allocation when biotic
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externalities are not internalized.

Figure 3a maps the simulated percentage change in the Shannon index at the county
level. On average, crop diversity increases by 33%, indicating that the social planner
selects more diversified allocations than non-cooperating farmers do in the data. We also
observe significant spatial heterogeneity, with a minimum increase of 10% and a maximum
at 81%. However, this heterogeneity mostly reflects initial differences in diversity.

To assess the role of between-crop externalities in the planner’s allocation, we set Kk = 0
for all crops in the subsample and solve for the rent-maximizing shares. Results appear in
Figure 3b. The Shannon index is, on average, 26% higher than in the data, indicating that
most of the gap between the rent-maximizing and initial allocations in Figure 3a stems
from the internalization of within-crop externalities, which should therefore be considered

first-order.

5 Conclusion

Absent any external control, conventional ecological wisdom holds that more specialized
fields are subject to a higher risk of crop failure. Concentrating production in the most
suitable crops, whether at the farm level to maximize returns or globally to exploit abi-
otic comparative advantage, should reduce agricultural productivity. Yet, the economic
literature provides limited insight into the underlying mechanisms.

In this paper, we develop a probabilistic model of agricultural production that cap-
tures two cross-field biotic externalities: specialization (within-crop effects, associated
with changes in a crop’s land share) and biodiversity (between-crop effects, associated
with changes in the mix of other crops). We derive farmers’ equilibrium choices of crop
and pesticide intensity and obtain a testable equation for crop productivity that we take
to the data. We assemble a large county-level dataset combining potential and actual land
use. We also propose a new instrumental-variables strategy that exploits variation in land
suitability for particular crops and for supporting greater crop diversity. We find that
both within- and between-crop externalities significantly affect productivity. We also find
heterogeneity across the 40 crops in our sample. A key finding is that major crops, such
as maize, rice, and wheat, would benefit globally from a reduction in their farmland share
and from county-level increases in other crop species richness and relative abundance. We

illustrate these benefits with two simulation exercises.
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Appendix

This appendix provides proofs of the theoretical predictions (section A) and presents
additional empirical results as tables (Section B) and figures (Section C).
A Proofs and Farmland Shares in Equilibrium

A.1 Proof of Proposition 1

Differentiating profits (2) with respect to p, and conditional on crop choice k, the sym-
metric Nash equilibrium between farmers is such that

W (o5 S5, p%) = 7/ (@) (13)

The average tax payment for crop k in area j is then 7; p?* = Tf. Competition for farmland
implying ré»“ = 0, it follows that at equilibrium in area j

Py (055 3, p3)as = ¢ (14)

Thus, crop revenues should be equalized. Since a negative externality on production may
result from excessive use of chemicals, the optimum of the farmer’s program is such that
pj < p%. Then, combining (4), (13) and (14), the equilibrium—dominant—strategy of a
farmer growing k in area j is

pf* = ﬁf — )\;‘?Tj/cj.

The field resilience to direct biotic factors becomes /1,9?( ) =1 / tk, with
t? = exp [/\;?(Tj/cj)zﬂ]

an index measuring the extent to which pesticides regulation and pest resistance in area
j reduce resilience. Cross-plot biotic factors being separable between crops, we also have:

exp [— > f%k(Sf)]
It

Eventually, using the developed expressions for all factors, the equilibrium resilience func-
tion satisfies

B§(5j7pj) =

I il R
J\Fj ;S JFi) — k 0
t5 11t

Writing a? = &?A? the potential yield absent biotic factors, the actual productivity for a
given crop k in country j becomes
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e a;? exp |[—> /%k(bé*)}
A )

7
! th 1t

which accounts for the direct (tf) and indirect (][, tf) effects of a reduction in pesticides
use. Using pfz;? = ¢; for all k € K, we also have

k k K’
pra’ t R y
— = tk exp [ > hr(SE) - Kk/(Sj*)]

Py aj
for any pair of crops (k, k') € K2.

A.2 Farmland Shares in Equilibrium

Given functional forms in Assumption 1, we have

¢
= t—i exp {nogSf* — /iokS]'?* + (kr — ke)H + /WH]'? *— nkHJk*] .
j

Taking logs, dividing by kg;, summing over all £ and using El[i 1 Sf =1, it comes

(o))

Z:

- <ln oL szln [(t‘i)ﬂ‘o/ﬂw}) (15)
J K J

(- H) S (-5

with kg = K/ Zf: 1(1/Koe) is the harmonic mean of the within-crop parameters.

To illustrate the mechanisms at play, consider the special case where specialization
effects are the same for all crops, i.e., kgr = Ko, and biodiversity effects are absent, i.e.,
ke =0 for all £. As Ky = ko, (15) simplifies to

K K
1 1
(ln(pfa;?) ~ % E ln(p§a§)> — (lntf % E lntﬁ)] .
(=1

In this case the difference between crop acreages is only due to their differences in potential
revenue p] a® and the impact of the environmental tax. The first bracketed term ln(pé?a,?) —

1 1
Sh — — 4+ —
J K_I_/-ﬁ:()

/KK, ln(pj j) corresponds to the difference between the potential revenue of crop k
and the average revenue (in the geometric mean sense). Similarly, the second bracketed
term measures the relative impact of the pesticides tax on crop k& compared to the other
crops. The largest areas are then devoted to crops whose difference between relative
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potential revenue and relative tax impact is the largest. If crop k suffers for higher direct
specialization effects than the others, i.e. kor > ko = ko for k' # k, then

K
1 1 1
S < i Ko (hl(p?a?/t?) K Z n(pa J/tz)m/ﬁw)
=1

and

’ I l ’ / / I =
k% k' k fk E 0 L I\Ko /K

Hence, a reallocation of crops occurs with a relative decrease in the acreage of crop k& and
a relative increase in the acreage of the other crops.

A.3 Proof of Proposition 2

We want to solve

mgx {Zpkszk : ZSk = 1}
k k

where _
—kok Sk —kk(H—Hy(S))

tk Hg ty

age

2L =

The Lagrangian of this program is
L= (przk—
k

where 6 denotes the multiplier associated to the surface constraint. The first order condi-
tion with respect to Sy gives

0Hy

1-— Sk) S =0
P2k ( KQkOk +ZZEI:CP£ZM£ Z@S

forallk e K={k=1,..., K|Sk > 0}, the subset of crops actually grown at the optimum.
Using

Z DezekpSe OH, B 0
" Fok Przkkor OSK  PrZkKok

and summing over k gives

1:Z_+ZZ PezekipSe ggfe _9; 1
€

i Zm b 20K0p
ek tek mek PmAmfiom i Pezekoe

hence

Sy OH,
Zeelc 1/koe — 1+ Zeelc Zmelc ppyizzféo; ﬁ

9 p—
> vex 1/ (Koepeze)
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Replacing, it comes

PezekeSe OHy
Z PezekeSe OHy Yoveic Vkoe =1+ 3 e Domer P zmKom O%m
Przrkior OSk > ek Pr2rkor/ (Pezeror)

9

ek

which simplifies to

1 1 PkeE ) DPezy /igSg (8[—1’@ 8H5>
Spk=—=——>+— 1|1+ — _
" ZZEIC B ( Z Koe (pfzﬁ Z Z PmzZm Kom 8Sk aSm

Pe Zf "vOf Lex ek mek

where
Pk _ We—(%ksk—Kozsz)-i-fika(S)—sz(s)

Peze Peagty
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B Additional Tables

Table B1: Crop sample description

Mean yield (t/ha) Share in harvested area (%) Share of counties
Crop where crop
Actual Potential Actual Potential dominates (%)
Alfalfa 6.41 8.03 2.01 3.10 2.31
Banana 1.81 1.17 0.39 0.90 0.60
Barley 1.06 2.10 5.35 2.93 4.35
Buckwheat 0.31 0.50 0.26 2.52 0.01
Cabbage 2.89 1.79 0.27 2.85 0.03
Carrot 2.65 3.31 0.09 3.88 0.00
Cassava 1.51 2.21 1.52 2.03 2.68
Chickpea 0.04 0.64 1.02 1.88 0.02
Cocoa 0.10 0.28 0.66 0.81 0.87
Coconut 1.88 0.50 1.03 0.73 1.60
Coffee 0.27 0.36 1.00 0.95 2.85
Cotton 0.16 0.22 2.90 3.33 1.28
Cow pea 0.10 0.61 0.88 2.59 0.34
Dry pea 0.72 0.78 0.61 2.46 0.01
Flax 0.10 0.33 0.05 2.64 0.00
Groundnut 0.40 0.76 2.20 2.82 0.42
Maize 2.13 3.35 13.38 3.78 25.74
Millet 0.32 1.21 3.33 3.41 0.80
Oat 0.77 1.14 1.31 2.83 0.32
Oil palm 0.67 0.41 0.95 0.42 0.76
Olive 0.08 0.08 0.67 0.55 1.03
Onion 12.93 3.30 0.26 3.51 0.01
Phaseolus bean 1.19 1.59 0.02 4.37 0.02
Pigeon pea 0.01 0.75 0.42 2.34 0.00
Rapeseed 0.66 1.13 2.42 2.93 0.05
Rice 1.44 1.69 14.79 2.22 15.02
Rubber 0.26 0.17 0.76 0.59 0.32
Rye 0.57 1.33 0.94 2.91 0.47
Sorghum 0.87 2.34 3.84 5.71 1.97
Soybean 0.77 1.75 7.45 3.71 4.20
Sugar beet 1.16 1.61 0.60 1.71 0.05
Sugarcane 2.31 1.87 1.92 1.15 3.42
Sunflower 0.56 1.72 2.02 3.91 0.22
Sweet potato 1.12 2.39 0.89 2.52 0.16
Tea 0.09 0.12 0.24 0.83 0.07
Tobacco 0.64 0.40 0.41 2.78 0.22
Tomato 6.82 2.33 0.34 3.24 0.08
Wheat 1.31 2.46 20.55 3.56 18.19
‘White potato 2.20 3.44 1.90 2.73 1.82
Yam 0.98 1.83 0.36 1.87 0.07

Notes: The statistics for each of the 40 crops are computed for the sample of 41,820 counties considered
in this paper. The second and third columns indicate the average yield of each crop as estimated by FAO-
GAEZ (potential) Earthstat (actual), respectively; the fourth and fifth columns indicate average, weighted
by county-level total harvested area, and maximum share of each crop in harvested area, respectively ;
the sixth column indicates the percentage of counties in which the crop has the largest share in harvested
area. Computed based on FAO-GAEZ, Earthstat.
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Table B2: Country sample description

Harvested area

Effective diversity

Country
Total (Mha) Share (%) Actual Potential

Afghanistan 2.62 0.27 2.55 12.79
Albania 0.32 0.03 5.16 26.20
Algeria 2.31 0.23 3.25 21.45
Angola 1.85 0.19 5.06 24.51
Argentina 24.84 2.52 4.78 25.48
Australia 20.05 2.04 4.08 19.28
Austria 0.98 0.10 6.55 20.00
Azerbaijan 0.89 0.09 3.96 23.77
Bangladesh 12.19 1.24 2.11 28.26
Belarus 3.14 0.32 7.18 19.88
Belgium 0.27 0.03 4.71 20.02
Benin 1.38 0.14 5.37 22.16
Bhutan 0.09 0.01 4.30 15.17
Bolivia 1.90 0.19 6.33 16.79
Bosnia and Herzegovina 0.45 0.05 5.68 23.16
Botswana 0.11 0.01 2.69 15.43
Brazil 41.97 4.26 3.52 25.32
Brunei 0.00 0.00 2.50 17.30
Bulgaria 2.68 0.27 5.63 23.12
Burkina Faso 3.36 0.34 4.48 17.27
Burundi 0.79 0.08 7.75 24.11
Cambodia 2.20 0.22 1.88 24.66
Cameroon 2.21 0.22 7.63 23.30
Canada 28.99 2.94 4.06 17.55
Central African Republic 0.59 0.06 6.43 24.68
Chad 1.67 0.17 3.98 15.24
Chile 0.72 0.07 6.95 14.85
China 128.30 13.02 6.73 25.21
Colombia 2.92 0.30 7.32 18.02
Costa Rica 0.32 0.03 6.58 19.88
Croatia 0.98 0.10 6.81 23.76
Cuba 1.72 0.17 5.03 26.50
Czechia 1.84 0.19 6.09 19.81
Cote d’Ivoire 5.26 0.53 7.05 24.47
Dem. Rep. of the Congo 5.23 0.53 5.77 24.89
Denmark 1.70 0.17 4.27 16.47
Dominican Republic 0.74 0.07 9.04 26.26
Ecuador 2.05 0.21 6.84 19.33
Egypt 0.42 0.04 6.77 2.05
El Salvador 0.60 0.06 4.39 23.55
Equatorial Guinea 0.10 0.01 4.41 20.89
Eritrea 0.30 0.03 3.83 13.09
Estonia 0.34 0.03 5.12 15.65
Ethiopia 4.46 0.45 6.56 22.01
Finland 1.25 0.13 4.23 11.70
France 11.78 1.20 5.92 23.13
French Guiana 0.01 0.00 2.52 19.98
Gabon 0.13 0.01 7.26 23.11
Gambia 0.20 0.02 3.86 17.20
Georgia 0.49 0.05 5.99 24.26
Germany 7.45 0.76 5.51 19.80
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Table B2 — Continued from previous page

Harvested area

Mean effective diversity

Country
Total (Mha) Share (%) Actual Potential

Ghana 3.97 0.40 5.84 23.78
Greece 2.38 0.24 4.40 25.06
Guatemala 1.27 0.13 4.79 21.56
Guinea 1.35 0.14 5.57 22.98
Guinea-Bissau 0.13 0.01 5.14 19.17
Guyana 0.20 0.02 3.41 21.75
Haiti 0.83 0.08 9.28 26.52
Honduras 0.79 0.08 4.73 25.67
Hungary 3.46 0.35 6.23 22.76
India 145.19 14.74 4.85 21.96
Indonesia 27.03 2.74 6.29 21.21
Iran 9.86 1.00 4.48 16.73
Iraq 0.32 0.03 4.48 14.80
Ireland 0.34 0.03 3.63 13.96
Italy 5.82 0.59 5.83 26.11
Japan 2.43 0.25 3.99 25.87
Jordan 0.07 0.01 4.59 14.35
Kazakhstan 12.18 1.24 3.96 14.96
Kenya 3.02 0.31 7.17 21.10
Kosovo 0.31 0.03 6.11 22.33
Kyrgyzstan 0.82 0.08 4.72 19.00
Laos 0.83 0.08 2.28 26.10
Latvia 0.50 0.05 6.02 16.49
Lebanon 0.16 0.02 5.98 23.18
Liberia 0.33 0.03 5.71 22.98
Lithuania 1.17 0.12 5.86 17.33
Luxembourg 0.02 0.00 4.57 19.88
Madagascar 1.93 0.20 4.42 26.06
Malawi 1.32 0.13 6.42 23.01
Malaysia 5.36 0.54 3.42 19.53
Mali 2.43 0.25 3.80 14.19
Mauritania 0.24 0.02 3.61 3.27
Mongolia 0.24 0.02 1.41 11.17
Morocco 5.67 0.58 3.66 21.36
Mozambique 2.47 0.25 4.63 22.69
Myanmar 8.87 0.90 5.93 25.85
México 12.61 1.28 2.59 19.87
Namibia 0.15 0.01 1.99 14.55
Nepal 3.42 0.35 4.61 27.93
Netherlands 0.46 0.05 6.68 18.41
New Zealand 0.21 0.02 6.37 18.93
Nicaragua 0.64 0.06 4.89 24.15
Niger 10.18 1.03 2.91 8.92
Nigeria 32.57 3.31 5.86 20.37
North Korea 1.92 0.19 6.96 23.05
Norway 0.20 0.02 3.67 13.72
Oman 0.00 0.00 2.66 1.60
Pakistan 16.95 1.72 5.82 17.57
Palestine 0.07 0.01 6.84 22.07
Panama 0.25 0.03 5.85 22.95
Papua New Guinea 0.68 0.07 7.08 20.51
Paraguay 2.33 0.24 4.99 29.34
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Table B2 — Continued from previous page

Harvested area

Mean effective diversity

Country
Total (Mha) Share (%) Actual Potential

Peru 1.89 0.19 8.30 13.77
Philippines 10.78 1.09 3.97 21.22
Poland 8.39 0.85 6.25 19.65
Portugal 1.02 0.10 6.18 24.42
Republic of the Congo 0.16 0.02 6.06 24.54
Romania 7.58 0.77 5.15 21.86
Russia 47.84 4.86 5.56 18.93
Rwanda 0.65 0.07 7.25 22.02
Senegal 1.70 0.17 4.09 14.86
Serbia 2.30 0.23 6.09 23.58
Sierra Leone 0.36 0.04 4.63 24.12
Slovakia 1.13 0.12 7.32 20.07
Slovenia 0.11 0.01 5.29 21.86
Somalia 0.41 0.04 2.84 10.62
South Africa 5.64 0.57 4.50 22.62
South Korea 1.33 0.14 2.91 25.73
South Sudan 1.03 0.10 3.33 20.09
Spain 10.72 1.09 5.66 23.23
Sri Lanka 1.73 0.18 3.75 23.44
Sudan 8.07 0.82 2.67 11.62
Suriname 0.05 0.01 3.19 22.47
Swaziland 0.15 0.02 3.68 23.35
Sweden 1.09 0.11 3.61 14.72
Switzerland 0.22 0.02 6.28 18.66
Syria 3.70 0.38 4.33 18.78
Taiwan 0.49 0.05 4.34 28.39
Tajikistan 0.70 0.07 3.96 20.60
Tanzania 4.54 0.46 9.83 24.49
Thailand 15.87 1.61 4.18 24.40
Timor-Leste 0.15 0.02 4.33 24.67
Togo 1.16 0.12 4.88 23.14
Tunisia 1.47 0.15 3.71 23.14
Turkey 16.96 1.72 4.55 21.97
Turkmenistan 1.19 0.12 3.39 10.33
Uganda 3.52 0.36 10.97 25.80
Ukraine 18.53 1.88 6.57 22.09
United Kingdom 3.95 0.40 4.01 14.89
United States 107.56 10.92 3.40 24.79
Uruguay 0.68 0.07 5.06 31.72
Uzbekistan 2.63 0.27 3.63 18.23
Venezuela 1.45 0.15 7.32 23.57
Vietnam 9.54 0.97 4.56 25.28
Yemen 0.31 0.03 7.05 11.01
Zambia 1.03 0.10 4.43 22.50
Zimbabwe 2.12 0.21 5.42 21.21

Notes: The statistics for each of the 148 crops are computed for the sample of 40 crops considered in this
paper. The second and third columns indicate the total harvested area in the county and the share of
each country in global harvested area; the fourth and fifth columns indicate average actual and potential
effective crop diversity (Hill’s numbers), with the Shannon index used as the underlying measure of mean
proportional abundance. For instance, a number of 4 indicates that, on average, the country is as diversified
as if it was growing 4 crops in equal proportions. Details on the computation of these indexes are available
in Subsections 3.2.2 and 3.2.3. Computed based on FAO-GAEZ, Earthstat.



C Additional Figures

Figure C1: Actual vs. potential yields

barley

maize

Actual yield

soybean

wheat

Potential yield

Notes: The figure displays scatterplots of actual (vertical axis) and potential (horizontal axis) yields for

the six major crops in terms of average actual shares in harvested area. The 45-degree line is also shown.
Computed based on FAO-GAEZ, Earthstat.
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Figure C2: Actual vs. potential farmland shares

barley ] maize rice

soybean wheat

Actual cropland share

Potential cropland share

Notes: The figure displays scatterplots of actual (vertical axis) and potential (horizontal axis) farmland
share along with generalized linear fits (purple curve) for the six major crops in terms of average actual
shares in harvested area. The fits are obtained from generalized linear regressions specifying a binomial
distribution and the logit link. Details on the computation of potential shares are available in Subsection
3.2.3. Computed based on FAO-GAEZ, Earthstat.
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Figure C3: Actual vs. potential effective diversity

Africa ) 7 Asia Europe

North America ) ) Oceania South America

Observed effective diversity

Potential effective diversity

Notes: The figure displays scatterplots of actual (vertical axis) and potential (horizontal axis) effective
crop diversity along with linear fits (purple line) for Africa, Asia, Europe, North America, Oceania and
South America. Effective crop diversity corresponds to Hill’s numbers with the Shannon index used as
the underlying measure of mean proportional abundance. Details on the computation of these indexes are
available in Subsections 3.2.2 and 3.2.3. Computed based on FAO-GAEZ, Earthstat.
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Figure C4: Instrument choice for farmland shares

Instrument for cropland shares
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Notes: The figure displays Kleibergen-Papp rank Wald F-statistics for each crop and three different instru-
mental variables strategies. Farmland shares are either instrumented by: (1) their potential counterpart,
computed as the ratio of the crop’s suitability index over the county-level sum of a suitability indexes
(“potential”); (2) the share of the county’s area assessed as suitable or very suitable for the crop’s culti-
vation as provided by FAO-GAEZ (“suitability”); (3) both. In all cases, the leave-one-out Shannon index
is instrumented by its potential counterpart. The selected instrument for the estimation is the one which
yields the highest F-statistic. The dashed line indicates the level below which it is generally considered
that the instrumentation is weak, i.e. F' = 10. Computed based on FAO-GAEZ, Earthstat.
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