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Abstract 

The rate of return to education (RoRtE) is one of the most important policy relevant parameters 

in economics. Variously, IV identification strategies have been used to overcome the problem 

of the endogeneity bias associated with years of education measurement. We explore a method 

to account for this endogeneity through instrument variable (IV) free estimation using Copula 

theory. We estimate the RoRtE based on the same earnings equation specification using data 

from five canonical data sets. Our estimate of the rate of return to education is consistently 

around 6% using these datasets, that have in the past, given rise to estimates for this parameter 

as high as 13-15%. Exacting robustness tests do not change our results. 
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1. Introduction. 

Arguably the rate of return to education (RoRtE) is one of the most important policy relevant 

parameters in economics. Its estimation has been discussed in seminal papers by Griliches 

(1977) and Card (2004). Griliches was concerned with overcoming ability bias and Card 

compared different Instrumental variable (IV) estimation strategies. The RoRtE parameter has 

variously been estimated, to be as low as zero (e.g., Pischke and von Wachter, 2008) or as high 

as 15% (e.g., Harmon and Walker, 1995, and Buscha and Dickson, 2012). If the RoRtE is zero 

then a policy of high level incentives to acquire more education is difficult to justify on financial 

grounds. In contrast, if the RoRtE is 15% per annum or greater, then education authorities 

should provide strong incentives for young people to stay at school for longer.  

Many other papers have estimated this parameter (e.g., Angrist and Krueger, 1991; Card, 1995; 

Harmon and Walker, 1995; Acemoglu and Angrist, 2001; Kling, 2001; Oreopoulos, 2006; 

Devereux and Hart, 2010; Carneiro, Heckman and Vytlacil, 2011) with different data, using 

alternative estimation methods, in various countries and at distinct points in time. Not 

surprisingly, there is considerable heterogeneity in the estimates retrieved for this single 

parameter.  While the large number of estimates reflects the attention devoted to this parameter, 

the heterogeneity of these results is perplexing and makes it difficult to inform education policy.  

The essential difficulty with the estimation of the RoRtE is that the acquisition of schooling is 

potentially endogenous to the determination of earnings. This is because the unobservable 

component in an earnings equation contains the influence of a person’s: drive, energy, ambition, 

ability, determination, personality and many other variables. These influences will relate to how 

much schooling a person decides to acquire. Logically the decision to acquire more education 

– to stay on at school past the compulsory school leaving age, or go to higher education, will 

partly be influenced by what a person’s expectation of their earnings prospects is, with and 

without, the extra educational investment. The standard way of attempting to overcome the 

endogeneity bias is to use IV estimation or a Regression Discontinuity Design (RDD). In the 

last 30 years a considerable emphasis has been placed in this literature on the use of IVs for 

schooling, for example, by using laws relating to the raising of the school leaving age (RoSLA).  

At least four reasons may contribute to these widely differing estimates of the RoRtE. First, 

returns to education are likely to vary across different types of individuals (see, e.g., Kling 2001, 

Koop and Tobias 2004, and Carneiro et al. 2011) and may well vary according to whether 

lifecycle earnings are being modelled from (lifetime) panel data rather than diverse cross 
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sections of people of different ages (see Bhuller et al 2017). Second, heterogeneity in previous 

estimates may simply result from the fact that the RoRtE may differ across countries, different 

labour markets, and at different points in time. For example, Pischke and von Wachter (2008) 

document a zero return to education in Germany; Grenet (2013) finds a return to education 

close to zero in France in 1967; Devereux and Hart (2010) report a 6% return to education in 

Britain using an education reform that took place in 1947 in Britain. Third, the RoRtE may also 

differ at different margins of education: the return to one more year of school at, for example, 

age 14-15, may not be the same as the return to one more year of university. 

A final reason for the large variation in the size of the estimates is that the econometric 

identification assumption and the estimation method employed may itself have a bearing on the 

size of the estimated coefficient. Generally, what is less well-known is the extent to which 

different estimation techniques applied to different equation specifications may change the size 

of the estimated coefficients that we find. This issue has been investigated using a single dataset 

from a single country in a previous paper (Dolton and Sandi, 2017) which examined the 

sensitivity of OLS, 2SLS estimates of the RoRtE to equation specification and to the definition 

of the instrumental variable (IV) used.  

Since the estimation of the earnings returns to education may involve the well-known problem 

of endogeneity, much of the RoRtE literature has relied on IV or RDD estimation to retrieve 

unbiased and consistent treatment effects (e.g., Angrist and Krueger, 1991; Card, 1995; Harmon 

and Walker, 1995; Acemoglu and Angrist, 2001; Kling, 2001; Carneiro et al., 2011, 

Oreopoulos, 2006).  

Recently there has been a growing scrutiny of IV and RDD methods of estimation. (See Abadie 

2018). This suggests that an alternative identification strategy may avoid relying on a particular 

IV with its attendant interpretation problems (See Carneiro et al, 2011). This is the approach 

we adopt in this paper as we propose estimating the RoRtE while accounting for the 

endogeneity bias with an instrument-free strategy, that is based on copula theory.12 More 

specifically, we use this copula-based approach to estimate the RoRtE in the canonical earnings 

 
1 Copulas have been used in a variety of contexts. Zimmer and Trivedi (2015) analyse selection and treatment effects in a 
demand for health care model where copulas help modelling the joint distribution of the error term of the demand for health 
care equation and the error terms in selection equations.  Bonhomme and Robin (2006) as well as Dearden et al (2006) used 
this approach to model lifetime earnings. However, to our knowledge this is the first attempt to apply the technique to overcome 
the endogeneity problem. 
2 Other instrument free estimation strategies have been used to tackle this issue, see Park and Gupta (2012), p568. We do not 
examine these here. 
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equation specification from five prominent papers, while using their own data. The motivation 

for this is fourfold. 

First, the use of the datasets examined by other authors in prominent papers provide us with the 

reference point of their results on the RoRtE as a logical comparator for our new suggested 

estimator. In the USA we examine the US Census data used by Angrist and Krueger (1991), 

the NLSYM data used by Card (1995) as well as the sample of identical twins used by 

Ashenfelter and Rouse (1998). In the UK we examine the Family Expenditure Survey (FES) in 

the Harmon and Walker (1995) paper. In Germany, we use the German Socio-Economic Panel 

Study (SOEP) used by Hoogerheide, Block, and Roy (2012) (henceforth HBT). 

 

Most specifically, we avoid assuming that there is a satisfactory IV which is highly correlated 

with years of schooling but uncorrelated with the unobserved heterogeneity, which partially 

determines earnings. Rather, we examine an alternative assumption that there is a regular joint 

distribution over any sample of individuals between schooling and the unobserved 

heterogeneity. Arguably this identification assumption is weaker than that involved in finding 

valid IVs (which are not weak). Accordingly, we are interested in what difference the use of 

this estimation procedure may reveal about the RoRtE.  

Second, by taking datasets from different countries, the UK, USA, and Germany with their 

different education systems and labour markets we explore whether our results have external 

validity and are not just the artifact of one particular system or the peculiarity of a specific set 

of data. In addition the estimated coefficients may have distinct interpretations when different 

IVs are used, for example it may be a LATE in the case of using the ROSLA, or an ATE in the 

case of using father’s education as the IV.   

Thirdly, these papers use different candidate IV variables in an attempt to find a variable which 

correlates with years of schooling but not with the assumed stochastic error term in the earnings 

equation. Card (1995) uses proximity of college, Ashenfelter and Rouse use twin’s education, 

Angrist and Krueger (1991) use quarter of birth, Harmon and Walker (1995) use the Raising of 

the School Leaving Age, and Hoogerheide, Block, and Roy (2012) (henceforth HBT) argue that 

father’s education can be considered to be a satisfactory IV.  The advantage of our study is that 

we examine these different IVs and find that, for the most part, the type or form of the IV used 

does not change our copula results. A further advantage of copula methods is that we are not 
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debating whether the effect of education should be interpreted as a local average treatment 

effect or not (Imbens and Angrist, 1994). 

The final advantage of our approach is that, conditional on our identification assumptions, we 

retrieve a direct estimate of the correlation between the years of schooling and the unobserved 

heterogeneity in the earnings equation. This is valuable as it potentially provides some evidence 

on the association of schooling with the error term.  

In the next section, we review the standard OLS specification of the human capital earnings 

equation and the standard IV identification strategy. We then explain how the copula framework 

may be used to overcome the assumption that schooling and the unobserved heterogeneity in 

earnings determination are uncorrelated. In section 3 we briefly describe the replication of the 

canonical papers and their data, presenting the copula results in section 4 on both the RoRtE 

and the underlying correlation coefficient between schooling and earnings heterogeneity. In 

section 5 we then explore different distributional assumptions to examine the robustness of our 

conclusions. The surprising conclusion of our investigation is, irrespective of the copula 

distributional assumptions used, that the RoRtE is surprisingly stable at around 6%. 

2. The Copula Model of Schooling and Earnings. 

Applying and extending the logic of Park ad Gupta (2012) to our setting we can consider the 

log-linear earnings-schooling relationship: 

log(%!) = (!
") + +,! + -! ,										0 = 1,⋯ ,3 (1) 

where, for 0 = 1,⋯ ,3, log(%!) denotes the log-wage of individual 0, (! is a (4 × 1) vector of 

exogenous regressors, ,! is a (1 × 1) regressor, measuring individual 0’s schooling, -! is a 

structural error term and + and ) are model parameters. 

Despite the apparent simplicity of model (1), identification of parameter +, the average wage 

returns to schooling, is complex because of the endogeneity of the schooling measure, ,!, due 

to the latter possibly being correlated with -!. Specifically, the most common concern is that 

the unobserved heterogeneity, -!, includes the influence of individual unobservables and is 

therefore likely to be correlated with the realised observed years of full time education. So the 

individual may choose how much post-compulsory full time schooling to acquire based on their 

unobserved ability (i.e.			6(-!|,!) ≠ 0 ) – possibly in the expectation that their future earnings 

are likely to be related to how much education they acquire. 
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Instead of relying on a presumed valid instrument, we adopt an instrument-free approach, based 

on copula theory, to identify the returns to schooling, +, in the possible presence of 

endogeneity3. The idea is that, even without instruments, one can obtain consistent estimates if 

the joint distribution of the endogenous regressor and the structural error term is known. 

Let us assume one knows the bivariate distribution, :(,, -),	that ,! and -! are generated from. 

Then, one can obtain consistent estimates of the model parameters by maximizing the log-

likelihood function derived from :(,, -). Identification in this case stems from knowledge of 

the information contained in the joint distribution of the endogenous regressor and the structural 

error term, not from instrumental variables. 

Conventionally marginal distrubutions are derived by integration from an assumed (limited 

choice of) parametric joint distribution. But this limits the choice of marginals for the 

endogenous regressor, ,!, and the structural error term, -!, thereby imposing restrictions on the 

stochastic nature of the observed data. This potentially causes bias in estimated parameters of 

interest. The copula approach overcomes this shortcoming of the standard model as it allows 

one to start from the marginals. Using information contained in the observed data, one can 

separately select appropriate marginal distributions for the endogenous regressor and for the 

structural error term. The joint distribution can then be inferred from these marginals with an 

assumption about their structure of dependence, described by a given copula.  

We start by assuming that the marginal distribution of the structural error term is normal. This 

is a reasonable default which has been nearly universally used for inference in this literature 

(e.g. Angrist and Krueger, 1991, Harmon and Walker, 1995, Card, 1999). Of course, other 

assumptions are possible. For example, if one believes that the actual error distribution may 

have thicker tails than the Normal, then the Student’s t-distribution can be used. In section 5, 

we assess the sensitivity of the proposed model to possible misspecification by showing that 

the model estimates are robust to violations of the distributional assumption of  -!. 

To avoid problems of distributional misspecification, we use the empirical marginal distribution 

of the endogenous regressor, ,!. Unlike the structural error term, which is unobserved, sample 

data from the true distribution of ,! is observed and allows us to let the data ‘speak for 

themselves’.  

 
3 Such an approach has previously been suggested by Park and Gupta (2012) in the general context of a linear 
regression model. 
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Using copula theory we can now construct the joint distribution function from the marginal 

distributions of the endogenous regressor and the structural error term, denoted by ;(<) and 

=(-), respectively. Letting >(<, -) be a joint distribution function with marginals ;(<) and 

=(-), Sklar’s theorem (Sklar, 1959) states that there exists a copula function, ?, such that for 

all , and -, 

>(<, -) = ?@;(<), =(-)A = ?(B#, B$) (3) 

where B# = ;(<) and B$ = =(-). This theorem is central to the theory of copulas and clarifies 

the role that copulas play in the relationship between multivariate distribution functions and 

their univariate marginals. Since ;(∙) and =(∙) are marginal distribution functions, B# and B$ 

are probability integral transformations, and thus B# and B$ are uniform(0,1) random variables 

and the copula can be viewed as a function [0,1]% → [0,1]. It becomes clear that the copula 

provides a way to study and model the scale-free dependence structure between variables after 

filtering out the influence of marginal distributions. Let :(<, -)	denote the joint density 

function. Then, from (3), we have 

:(<, -) = G@;(<), =(-)Aℎ(<)I(-), (4) 

where G@;(<), =(-)A = J%? J<J-⁄  is the copula density and where ℎ(<) and I(-) are the 

marginal density functions of the endogenous regressor, , and the structural error, respectively. 

In the statistics literature, alternative copula functions have been studied (see Nelsen, 2006), 

each of these functions being more appropriate to model a specific structure of dependence 

between the marginals. We start by following Park and Gupta (2012) who use the Gaussian 

copula to model the dependence between the endogenous regressor and the structural error 

term: 

?(B#, B$) 		= ᴪ&@Φ'((B#), Φ'((B$)A																																																					 

						=
1

2O(1 − Q%)( %⁄ ∙ R R exp V
−(W% − 2Q ∙ W ∙ X + X%)

2(1 − Q%)
Y

*!"(,#)

'.

*!"(,$)

'.
ZWZX, 

(5) 

where Φ denotes the univariate standard normal distribution function and ᴪ& denotes the 

bivariate standard normal distribution function with the correlation coefficient, Q. If we let ,∗ 

and -∗ denote Φ'((B#) and Φ'((B$), respectively,  the Gaussian copula models [,∗, -∗]" as the 

standard bivariate normal distribution with correlation coefficient, Q.  
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From (4) and (5), we can write the joint density function of ,! and -! 	: 

:(,! , -!) = 	
1

(1 − Q%)( %⁄ exp [−
Q% \Φ'(@B#,!A

%
+Φ'(@B$,!A

%
]

2(1 − Q%)

+
QΦ'(@B#,!AΦ'(@B$,!A

(1 − Q%)
^ ℎ(,!)I(-!),		 

 

 

(6) 

We can obtain consistent estimates by maximizing the following log-likelihood function, 

derived from (6), with respect to model parameters Θ = {+, ), a$ , Q}	: 

ln#({&! , (!}|Θ) = 	−
0

2
ln(1 − 3")																																																																																															 

					−45
3" 6Φ#$89%,!:

"
+Φ#$89',!:

"
<

2(1 − 3")
−
3Φ#$89%,!:Φ#$89',!:

(1 − 3")
=

(

!)$
+ ln>*+,,!"-((!), 

 

(7) 

where c12,3#%4(∙) is the normal density with mean 0 and variance	a$%. Note that the 

nonparametric density ℎ(,) does not include any parameters and thus disappears from the log-

likelihood function. However, it influences the log-likelihood function via B5,!.  To obtain B#,!, 

we simply exploit the fact that  ,! is coded as a discrete variable in all the datasets that we use 

and compute it as the cumulative frequency corresponding to ,!. B$,! can be easily calculated 

from the normal distribution function. Recall that  B$,! = =(-!) = Φ12,3#%4(-!), where Φ12,3#%4(∙) 

is the distribution funtion of the normal with mean 0 and variance a$%. This implies that: 

Φ#$89',!: = (!
∗ = Φ#$ ?Φ*+,,!"-((!)@ = (! A'⁄ . (8) 

As shown by Park and Gupta (2012), the Gaussian copula model implies that [,∗, -∗]" follows 

the standard bivariate normal distribution4 with correlation coefficient, Q which allows one to 

rewrite (1) as follows: 

 

4 This can be written as follows: 

!"&
∗

#&∗$ = !1 0
( )1 − (($ !

+,),&
+,(,&$,								!

+,),&
+,(,&$~N12

0
03 , 2

1 0
0 134, 
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log(E!) = F!
/G + H&! + A' ∙ 3 ∙ &!

∗ + A' ∙ J1 − 3" ∙ KL",! ,										M = 1,⋯ ,0 (9) 

This representation provides another way to estimate the model. Specifically we can 

consistently estimate the model in (9) using the least squares estimator, where ,!
∗ is included as 

an additional regressor and de%,! is not correlated with any other terms on the right-hand side of 

this equation. The additional regressor, ,!
∗, corrects for the endogeneity bias and in this respect, 

is similar to the control function approach of others (Heckman, 1978, Hausman, 1978). Note  

however that if & were normally distributed, the parameter H would not be identifiable, as in this case, 

we would have &!
∗ = Φ#$89%,!: = Φ#$8Φ(&!): = &!. We explore the empirical justification of 

these assumptions in Appendix D where we explicitly investigate the non-normality of S and 

compare its distribution to that of ,∗ .  

Our estimation strategy occurs in two stages. In the first stage, B#,! or ,!
∗ are inferred from the 

observed distribution of ,. In the second stage, computed B#,! or ,!
∗ are used to construct the 

likelihood function, and the parameters are estimated. However, the usual standard errors of 

parameters based on the information matrix would treat the computed B#,! and ,!
∗ as 

(measurement) error-free variables so that the standard errors may be incorrect. We use 

bootstrap standard errors instead. 

 

3. Data and Empirical Replication Strategy. 

In our empirical estimation we use a variety of different data sources: both cross section, cohort, 

censuses and survey data, as well as data collected on specific sub-populations. We do this 

because we wish to ‘stress test’ our estimation procedure to establish its robustness to different 

kinds of data. We also use survey from one-off special sub-populations – i.e. e.g. twins in the 

case of Ashenfelter and Rouse (1998) or black Americans, as used by Angrist and Krueger 

(1991) in the case of one of their tables. 

The ideal dataset to be used to compare the results of different estimation techniques is one 

which: incorporates the possibility of using different common IV techniques; has a large sample 

 
or #&∗ = ( ∙ +,),& +)1 − (( ∙ +,(,& = ( ∙ "&∗ +)1 − (( ∙ +,(,&. Combined with (8), this yields: 

#& = 7+ ∙ #&∗ = 7+ ∙ ( ∙ "&∗ + 7+ ∙ )1 − (( ∙ +,(,&. 
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consisting of many people of different ages who have experienced different labour market 

conditions; has been used to publish articles in highly ranked journals so that a meaningful 

comparison may take place with generally accepted and well cited findings. 

The choice of data set and paper was also guided by the fact that we wish to explore the effect 

of different IV variables – in our selected papers we have five very different IVs which 

genuinely reflect the diversity of instruments which have been variously used in the literature. 

Card (1999) uses the proximity of college, HBT (2012) use father’s education, Ashenfelter & 

Rouse (1998) use the other twin’s reported years of education, Harmon and Walker (1995) use 

the RoSLA, and Angrist & Krueger (1991) use the quarter of birth.  Each of these IVs have 

their merits and constitute genuine attempts to find a variable highly correlated with years of 

schooling, but uncorrelated with unobserved heterogeneity in the earnings equation. In each 

paper the suitability of the use of the IV estimation technique depends essentially on the strong 

(but untestable) assumption of the degree to which the chosen IV was not correlated with the 

unobserved heterogeneity in the earnings equation. It is likely that this may vary between, for 

example, using a characteristic of the family of the respondent – e.g HBT (2012) using father’s 

education, rather than using, for example a natural experiment like a change in the law – as per 

the RoSLA. 

We also wished our data to be taken from different countries – in our case: the USA, UK and 

Germany and to have an array of different sample sizes and other possible available controls 

for the earnings equation. The virtue of data from different countries is that it means that the 

education experiences of the respondents is different with different institutional structures and 

school examination systems. Our sample sizes vary from 658 in the case of Ashenfelter & 

Rouse (1998) to 329,509 in the case of Angrist & Krueger (1991). 

The basic characteristics of the datasets used are summarized in Appendix A and specifically 

in Table A1. Further details of these data are available in the original papers cited in the 

references. Three features of our comparative datasets are worth mentioning.  Firstly, two of 

the datasets contain men and women, namely those studied by Ashenfelter & Rouse (1998) and 

HBT (2012) whilst the others use data from men only. Secondly, one dataset is a census dataset 

which contains limited personal conditioning regressors, namely that by Angrist & Krueger 

(1991) whilst the others are based on survey data with many richer individual co-variates. 

Thirdly, it should be pointed out that our different data come from very different time periods 

– the earliest having been sampled between 1966 and 1970 and the latest sampled only in 2004.  
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The paper by Card (1999) uses US cohort survey data from the National Survey of Young Men 

(NSLYM) and consists of an estimation sample of only 3010 men. This dataset has been used 

by many researchers over the years. American Census data is used by Angrist & Krueger (1991) 

over the years 1970, and 1980 which consists of over 329,509 observations.  They also have a 

sample of 26,913 black men which we exploit in one of our estimation replications. Ashenfelter 

& Rouse (1998) use a dataset of their own collection which relates to a special survey of 

identical twins collected over the years 1991-3. Unfortunately, this dataset is limited in size 

with only 684 twins but does afford us the opportunity to examine a specialist more highly 

educated subset of the population for whom we have an interesting IV. 

The paper by HBT (2012) uses the German Socio-Economic Panel (SEOP) from 2004. This is 

a yearly household panel survey and is recognized as the best available data of households in 

Germany. It consists of 8,244 men and women and is characterized by a rich set of possible 

conditioning regressors. Their paper has a different focus than the other papers in that it 

examines the possible underlying person specific heterogeneity in the RoRtE by using Bayesian 

methods. Their suggested IV of using father’s education, if it had been used in a more 

conventional setting may have been more controversial. It affords us the opportunity to possibly 

examine a candidate IV which arguably is more likely to be endogenous. 

Finally, the paper by Harmon and Walker (1995) uses the UK Family Expenditure Survey Data 

which is a cross section dataset that has been collected for over 65 years since 1961. Arguably 

this data is appropriate for the examination of the rate of return to education as it encompasses 

detailed information on individuals of different ages over many years which include those 

which saw the changing of the compulsory schooling reforms.  

A further consideration in our choice of sample was to try to include less representative datasets 

to see how far our findings could be generalizable to other, less typical, data. This aim is realised 

by the use of the Angrist & Krueger (1991) subsample of only black men (who typically have 

less years of completed education) in their Table VIII. Here we see that the RoRtE is 

substantially lower at around 0.045. The second atypical sample we use is the data from 

Ashenfelter & Rouse (1998) which uses only identical twins. A major reason they are atypical 

is that they have around a year’s worth more of education than the population at large. Here we 

find the RoRtE is much higher at around 0.12. This is potentially due to the non-representative 

nature of the twins sample. Another crucial aspect of our study is the heterogeneity of schooling 

years in different datasets. In particular, the empirical distribution of years of schooling may 
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not be normally distributed. This is important for the identification of the returns to schooling 

in this approach as it, indeed, requires that the schooling variable be non-Normal. This can 

easily be seen from (9). If ,! were normally distributed, ,!
∗ would be a linear transformation of 

it since ,!
∗ = Φ'(@;(,!)A. Hence, we would not be able to separately identify + and a$ ∙ Q in 

(9). 

As mentioned above, we have chosen to let the data speak for themselves by simply letting 

;(,!) be the cumulative frequency up to ,!. Of course, one could alternatively consider kernel 

density estimation. We have also done this using Harmon and Walker’s (1995) data but it turned 

out that this makes little difference if any to the estimated coefficients.5  

Our estimation and identification strategy involves first replicating what estimates may be 

retrieved by the use of OLS estimation of the earnings equation in each paper ‘as if’ there was 

no concern about the possibility of endogeneity. This also establishes that we have indeed got 

the right data and can retrieve the same estimates as the original authors. We then use their 

published details to replicate the authors own IV estimation of the RoRtE coefficient. Finally, 

we then use our suggested copula estimation to directly compare our results with the OLS and 

IV estimates of the same parameter. We experiment with simple changes to the standard human 

equation specification to see how the RoRtE parameter behaves. We find that the estimated 

coefficient varies between .05 to .065 depending on what other regressors are used.  

 

4. Empirical Results from Copula Estimation. 

In this section, we report the main results of the paper where we compare the OLS, IV and 

copula estimates of the RoRtE for the 5 different papers. We have replicated the authors OLS 

and IV estimation strategies and then re-estimated the authors preferred specifications via the 

use of the Gaussian copula through maximization of the log-likelihood function (7) for the five 

papers under consideration. The results are reported in Table 1. In Panel A, we report the results 

for the preferred specifications in the papers by Card (1993), HBT (2012), Harmon & Walker 

(1995) and Ashenfelter & Rouse (1998) papers. In Panel B, we report the results for three 

 
5 School leaving age being a discrete variable with bounded support, we actually used local polynomial kernel 
density methods with Gaussian kernel, jittering (Nagler, 2018) and direct plug-in methodology for bandwidth 
selection (Sheeter and Jones, 1991). 
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different specifications in the Angrist & Krueger (1991) paper6. For each paper, we report the 

author’s and our own OLS estimates and the Gaussian copula estimates. In nearly all cases we 

replicate the authors OLS and 2SLS IV results to within 3 decimal places. 

The most eye-catching result is that whatever specification one considers, the estimated IV 

RoRtE is systematically larger than its OLS and Copula counterparts in Table 1. The copula 

approach we used also suggests that OLS estimates can be higher or lower that the copula 

estimates. However, the size of this difference is far from being large. Overall, the copula-based 

method suggests the unbiased estimate of the RoRtE is not much larger than its OLS 

counterpart: with 6.21%, it is not even the half of the 15.4% Harmon and Walker suggested it 

is, based on the same data and the same earnings equation specification. 

That fact that the estimate suggested by the copula approach is not very different from its OLS 

counterpart is probably due to potential endogeneity not being so severe. At least this is what 

the estimated linear correlation between school leaving age and the structural error term of the 

estimated earnings equation would logically predict.  

There are basically four other substantive conclusions from the results in Table 1.  Firstly, it 

would seem that the copula estimates of the RoRtE is approximately around 6% whichever data 

we use. (The only exception is the Ashenfelter and Rouse (1998) data on twins which is a 

special case). The copula RoRtE estimate always seems to be much lower than IV and closer 

to the OLS estimate (although mostly slightly higher than OLS too).  

  

 

  

 
6  In Table 1 we report our results using the data from Angrist & Krueger (1991) Table VI relating to all men born 1920-29 from the 1970 US 
Census and their Table VIII relating to black men born 1930-39 from the 1980 US census.  
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Table 1: OLS, IV and Copula-based Maximum Likelihood Estimates of the Return to Education 
Estimate by Paper. 

PANEL A 
 Card (1993) HBT (2012) Harmon & Walker 

(1995) 
Ashenfelter & Rouse 

(1998) 
Regressor  Authors’ Ours Authors’ Ours Authors’ Ours Authors’ Ours 

OLS RoRtE 
0.073*** 
(0.004) 

0.0725** 
(0.0037) 

0.0658*** 
(NA) 

0.0658*** 
(0.0021) 

0.0613*** 
(0.001) 

0.0597*** 
(0.0010) 

0.1100*** 
(0.0096) 

0.1100*** 
(0.0096) 

IV RoRtE 
0.132*** 
(0.049) 

0.1304*** 
(0.0520) 

0.0792*** 
(NA) 

0.0792*** 
(0.0069) 

0.1525*** 
(0.015) 

0.1548*** 
(0.0143) 

0.1160*** 
(0.0104) 

0.1160*** 
(0.0104) 

Gaussian 
copula 

RoRtE 
 0.0638*** 

(0.0051) 
 0.0569*** 

(0.0044) 
 0.0619*** 

(0.0023) 
 0.1193*** 

(0.0189) 

 ! 0.0376** 
(0.0187) 

0.0217** 
(0.0109) 

-0.0104 
(0.0098) 

-0.0225 
(0.0395) 

PANEL B 
 Angrist & Krueger (1991) 

Table IV, Specification 3/4 Table IV, Specification 7/8 Table VIII, Specification 7/8 
Regressor  Authors’ Ours Authors’ Ours Authors’ Ours 

OLS RoRtE 
0.0802*** 
(0.0004) 

0.0802*** 
(0.0004) 

0.0701*** 
(0.0004) 

0.0701*** 
(0.0004) 

0.0576*** 
(0.0013) 

0.0576*** 
(0.0014) 

IV RoRtE 
0.1310*** 
(0.0334) 

0.1310*** 
(0.0352) 

0.1007*** 
(0.0334) 

0.1007*** 
(0.0354) 

0.0391*** 
(0.0199) 

0.0391 
(0.0205) 

Gaussian 
copula 

RoRtE 
 0.0832*** 

(0.0007) 
 0.0692*** 

(0.0007) 
 0.0460*** 

(0.0010) 

 ! -0.0122*** 
(0.0023) 

0.0035 
(0.0025) 

0.0476*** 
(0.0038) 

Standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1. 

 

The second is that the IV estimates are larger than the OLS estimates. Comparing the RoRtE 

obtained by OLS to the IV estimate it seems that the estimate is around half of the IV estimate. 

Again, a special case relates to black men in the 1980 US census data from the Angrist and 

Krueger (1991) data, where the RoRtE is lower at around 5%. This is in their Table VIII, 

Specification 7/8 where it is possible that this specification exhibits endogeneity as shown by 

the copula estimate of Q = 0.0476.  

 

A third substantive finding from Table 1 is that it does not make much difference what IV is 

used – these estimations variously use: ROSLA, Quarter of Birth, Nearness of college, Twin 

data, and father’s education. The OLS and copula results are similar in all cases – it is only the 

IV results which are markedly different – up to 200% larger. 

 

The fourth area of our substantive conclusions relates to the indicator for the possible presence 

of endogeneity. In our case studies the copula estimation suggests that the estimation of Q is 
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usually very low and often insignificant. This may mean that for the papers we examine the 

schooling years variable is possibily not endogenous. This can be seen from last row in Panel 

A and Panel B of Table 1. This suggests that it is possible that endogeneity of schooling may 

not actually be a problem in the, Ashenfelter and Rouse (1998) and Harmon and Walker (1995) 

papers. Although it should be noted that Q is statistically significantly different from zero in the 

Card (1993) paper, the HBT (2012) study, and two of the Angrist and Krueger (1991) 

specifications.  

 

5. Robustness. 

There are three areas of potential concern regarding the identification and estimation of the 

results in Table 1. Specifically, it is possible that the results we have obtained are sensitive to 

the exact specification of the earnings equation (and/or the first stage IV equation). We examine 

this issue in sub-section 5.1. Secondly, we may question whether the assumption about the 

distribution of the unobserved heterogeneity term in the earnings equation is really Normally 

distributed and how much it matters if it deviates from Normality. We discuss this aspect in 

sub-section 5.2. where the Student distribution is considered as an alternative to normality. 

Thirdly, the results in Table 1 are based on the assumption that, school leaving age being 

endogenous, identification of the RoRtE is possible if one knows the joint distribution of 

school-leaving age and individuals’ unobserved characteristics. Copula theory is very helpful 

in this respect as it allows one to model that joint distribution in a quite flexible way. According 

to Sklar’s theorem, knowledge of the joint distribution is guaranteed if one knows the marginal 

distributions and their structure of dependence. So far, we have assumed the error term has a 

normal distribution and considered that the structure of dependence between the latter and our 

schooling variable can be described by a Gaussian copula. In sub-section 5.3., we assess the 

sensitivity of our results based on the Gaussian copula to alternative dependence structures. 

 

5.1. Sensitivity to Equation Specification. 

One important question which may have a bearing on the exact nature of the RoRtE estimation 

results is the exact form of the specification of the earnings function.  In this section, we report 

the estimation of the RoRtE when different controls are used in the earnings equation. Using 

the Harmon and Walker (1995) data we compare how the RoRtE coefficient varies as the 

controls vary for both the OLS, IV and copula estimation procedures in Table 2. The first thing 
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to notice is that the copula RoRtE estimates only vary between 0.0538 and 0.0672 between no 

controls and a full set of controls and does not get monotonically smaller in size as more controls 

are added. The second feature of the results is that the copula estimates are around 0.004 larger 

than the OLS results on a consistent basis irrespective of the specification. 

What is clear about the results in Table 2 Panel B, is the extent to which the exact form of the 

specification of the first and second stage IV changes the estimated RoRtE coefficient. Literally 

from negatively significant, to insignificantly different from zero, to 0.15 and statistically 

significant. The literature has chosen to emphasize the latter as the most appropriate estimate 

and this has had huge attendant policy implications. It is appropriate for us to examine the extent 

to which this coefficient might change if we change out basic underlying identification 

assumption.   

However, as can be seen from the alternative specification, the results critically depend on the 

age controls used, and on the inclusion of controls for the birth cohort. This provides support 

to Card’s (1999) criticism of Harmon and Walker (1995) regarding adequate controls for 

systematic inter-cohort changes in educational attainment and earnings. 

A final observation on these results is that the Q parameter estimate is uniformly small 

irrespective of specification. Although it is statistically significantly different from zero in 

specification columns (1) and (4). This suggests that it is possible that endogeneity of schooling 

may not actually be a problem and that it could be dependent on the specification of the first or 

second stage equations.  

We also find that the estimates can be sensitive to the specification of the equations used in the 

first and second stage of ordinary IV in the Angrist and Kreuger (1991) paper in all their tables. 

In addition, holding the specification constant but changing the data years – for example see 

Angrist and Kreuger (1991) – we saw in Table 1 that the results on the size of the estimated 

RoRtE and Q can change markedly. For Q it goes from negatively significant, to insignificantly 

different from zero, to positively significant. But the differences are never large.  
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Table 2: Different Specification Estimates of Returns to 
Education and Log Hourly Earnings, Harmon & Walker (1995): 

Male Sample (FES 1978-86 Data) 
 

PANEL A: OLS 
 (1) (2) (3) (4) (5) 
VARIABLES lnW_hourly lnW_hourly lnW_hourly lnW_hourly lnW_hourly 

RoRtE 0.0538*** 0.0647*** 0.0507*** 0.0521*** 0.0597*** 
 (0.00105) (0.00101) (0.00105) (0.00105) (0.00101) 

Observations 34,335 34,335 34,335 34,335 34,335 
R-squared 0.071 0.244 0.089 0.082 0.269 

 

                      PANEL B: IV 
 (1) (2) (3) (4) (5) 
VARIABLES lnW_hourly lnW_hourly lnW_hourly lnW_hourly lnW_hourly 

RoRtE -0.0068** 0.1210*** -0.0044 -0.0162*** 0.1548*** 
 (0.0033) (0.0136) (0.0032) (0.0034) (0.0143) 

Observations 34,335 34,335 34,335 34,335 34,335 
R-squared 0.036 0.155 0.027 0.017 0.197 

 

 

                     PANEL C: Gaussian Copula 
 (1) (2) (3) (4) (5) 
VARIABLES lnW_hourly lnW_hourly lnW_hourly lnW_hourly lnW_hourly 

RoRtE 0.0580*** 0.0672*** 0.0538*** 0.0569*** 0.0619*** 
 (0.00213) (0.00217) (0.00236) (0.00231) (0.00181) 

"#  0.4297*** 0.3876*** 0.4254*** 0.4270*** 0.3809*** 
 (0.00246) (0.00235) (0.00261) (0.00258) (0.00247) 
!  -0.0179*** -0.0119 -0.0131 -0.0205*** -0.0104 
 (0.00823) (0.00874) (0.00878) (0.00875) (0.00949) 

Observations 34,335 34,335 34,335 34,335 34,335 
Log-likelihood -81571.16 -78035.57 -81236.86 -81362.51 -77444.41 

 

CONTROLS 

     

Constant Yes Yes Yes Yes Yes 

age and age squared No Yes No No Yes 

regional dummies No No Yes No Yes 

year dummies No No No Yes Yes 

Standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1 
Notes on Panel C: 
1. These estimation results are based on the observed (empirical) distribution of school leaving age. 
2. These results assume the structural error term is normal and the structure of dependence between the latter and school leaving age is describable by a 
Gaussian copula. 
3. Bootstrap standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1 
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5.2. Non-Normal Error Term in the Earnings Equation 

In the copula results so far discussed we have assumed the error term for the earnings equation 

is normally distributed. This is the assumption typically made in the OLS general linear model 

for inference purposes. But it is also the assumption which is generally used as a reasonable 

approximation to reality. In Appendix C we show the conditions under which this assumption 

may be justified formally, if the earnings distribution is log normal. We also invoke the logic 

of why the assumption of Normality of the stochastic error term in the earnings equation may 

reasonably be assumed to be approximated by the Normal invoking Central Limit arguments. 

If the logic in Appendix C is accepted then we can have some confidence in the results in Table 

1.  

Notwithstanding the above logic and the fact that the assumption of Normality is usually 

adopted in the literature, we now assess the robustness of our estimates of the RoRtE to possible 

misspecification in this respect. We do so by considering a distribution of the error term that 

involves thicker tails than the Normal, namely the Student’s t-distribution.  

More specifically, the density of the error term is given by: 

I(-!) =
1
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h + 1
2 ]

i \
h
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h
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, 

where h denotes the number of degrees of freedom and i is the gamma function.7 

Assuming the Gaussian copula (5) describes the structure of dependence between school 

leaving age and the error term, the log-likelihood function to be maximized is given by: 
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where B$,! = s6(-!) , s6(∙) being the CDF of the Student distribution with h degrees of freedom. 

 
7 O(P) = ∫ R0#$S#1TR
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The results are reported in Table 3 where the same set of 5 specifications from Table 2 for the 

Harmon and Walker (1995) paper are again considered. Although they only can be compared 

with caution, the optimum values of the log-likelihood are much smaller than those in the 

bottom of Table 2, hence suggesting the fit to the Student’s t-distribution is less appropriate 

than the fit of the Normal distribution. This intuition is confirmed by the very large estimated 

degrees of freedom. A number of degrees of freedom as large as 341 suggests the distribution 

of the error term does not have thick tails and can therefore be very reasonably approximated 

by a Normal distribution. 

 

Table 3: Copula-based Maximum Likelihood 
Estimates of Returns to Education with Student Error 

Term in the Log Hourly Earnings equation for the 
Harmon and Walker (1995): Male Sample (FES 1978-

86 Data) 
 (1) (2) (3) (4) (5) 
VARIABLES lnW_hourly lnW_hourly lnW_hourly lnW_hourly lnW_hourly 

RoRtE 0.0545*** 0.0747*** 0.0509*** 0.0523*** 0.0680*** 
 (0.00260) (0.00228) (0.00258) (0.00257) (0.00226) 

Constant Yes Yes Yes Yes Yes 

age and age 
squared 

No Yes No No Yes 

regional dummies No No Yes No Yes 

year dummies No No No Yes Yes 

!  -0.0048 -0.0288*** -0.0025 -0.0039 -0.0239*** 
 (0.00428) (0.00352) (0.00423) (0.00422) (0.00343) 

#  341.24*** 341.24*** 341.24*** 341.24*** 341.24*** 
 (4.60E-5) (4.81E-5) (3.29E -4) (5.92E-5) (2.30E-6) 

Observations 34,335 34,335 34,335 34,335 34,335 
Log-likelihood -96633.62 -96040.97 -96572.60 -96595.50 -95954.24 

Standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1 
Notes : 
2. These results assume the structural error term follows a distribution of Student (with 4 degrees of freedom) and the structure of dependence 
between the latter and school leaving age is describable by a Gaussian copula. 
3.We were not able to obtain bootstrap standard deviations as log-likelihood maximization failed to converge for every sample replication. We 
present approximate standard errors instead, computed as the square roots of the approximate variance-covariance matrix, 5!"6#65!" where 
5 = ∇$9(;), is the Hessian of the log-likelihood function, 9(;) = ∑ 9%(;)&

%'"  and 6 = (∇9", ⋯ , ∇9&) = *?9% ?;(⁄ -, its gradient. See Cramer 
(1986) or Gallant (1987). 
 

Also, remarkable in Table 3 is the relative instability of the estimates of RoRtE as well as of 

the coefficient of correlation between school leaving age and the error term. In specifications 

(2) and (5), inclusion of age and its square as regressors results in both a significantly higher 

negative correlation and a significantly larger RoRtE. But even in these two specifications, 
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where the estimated RoRtE is the largest under the Student t-distribution hypothesis, these 

coefficients remain relatively close to their OLS counterparts.  

5.3. Non-Gaussian Copulas 

Another question of interest is that of the potential effect on estimated RoRtE of considering 

alternative copula assumptions; that is, of considering alternative descriptions of the structure 

of dependence between school leaving age, the endogenous regressor, and the error term of the 

earnings function. In Table 4, we compare the results from estimating the preferred 

specification in each article under different copula hypotheses. In the different rows of the table, 

we report results from three alternative copula assumptions: the Student copula, the Gumbel 

copula and the Clayton copula, respectively. In Appendix B, we give a formal presentation of 

the model under consideration in each of the three scenarios and we specify the corresponding 

log-likelihood function that we maximize to estimate the model parameters. 
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Table 4: Alternative Copula Maximum Likelihood Estimates of Returns to Education and Log 
Hourly Earnings by Paper. 

PANEL A 
 Card (1993) HBT (2012) Harmon & 

Walker (1995) 
Ashenfelter & 
Rouse (1998) 

Gaussian 
copula 

RoRtE 0.0638*** 
(0.0051) 

0.0569*** 
(0.0044) 

0.0619*** 
(0.0023) 

0.1193*** 
(0.0189) 

 3 0.0376 
(0.0187) 

0.0217** 
(0.0109) 

-0.0104 
(0.0098) 

-0.0225 
(0.0395) 

Student 
copula 

RoRtE 0.0607*** 
(0.0056) 

0.0508*** 
(0.0059) 

0.0524*** 
(0.0026) 

0.1190*** 
(0.0207) 

Ndf 26.84 
(0.0011) 

52.70 
(0.0038) 

40.63 
(0.0029) 

23.20 
(0.0026) 

 3 -0.0612** 
(0.0195) 

-0.0438** 
(0.0145) 

-0.0570** 
(0.0128) 

0.0277 
(0.0467) 

Clayton 
copula 

RoRtE 0.0722*** 
(0.0025) 

0.0667** 
(0.0021) 

0.0587** 
(0.0014) 

0.1243** 
(0.0192) 

U 
0.0034 

(0.0763) 
-0.0086 
(0.0103) 

0.0206 
(0.0194) 

-0.1128 
(0.1197) 

Gumbel 
copula 

RoRtE 0.0725*** 
(0.0042) 

0.0628*** 
(0.0023) 

0.0594** 
(0.0013) 

0.1059** 
(0.0112) 

V 
1.0000*** 
(0.0001) 

1.0008*** 
(00004) 

1.0002 
(0.0002) 

1.0010 
(0.0013) 

PANEL B 
 Angrist & Krueger (1991) 

Table IV,   
Specification 3/4 

Table IV,   
Specification 7/8 

Table VIII, 
Specification 7/8 

Gaussian 
copula 

RoRtE 
0.0832*** 
(0.0007) 

0.0692*** 
(0.0007) 

0.0460*** 
(0.0010) 

 ! -0.0122*** 
(0.0023) 

0.0035 
(0.0025) 

0.0476*** 
(0.0038) 

Student 
copula 

RoRtE 0.0823*** 
(0.0014) 

0.0655*** 
(0.0016) 

-0.17498 
(0.0105) 

Ndf 28.71 
(0.63E-5) 

26.23 
(0.0005) 

5.06 
(0.3980) 

 3 0.0102* 
(0.0056) 

-0.0193*** 
(0.0066) 

-0.7647*** 
(0.0149) 

Clayton 
copula 

RoRtE 0.0792*** 
(0.0003) 

0.0697*** 
(0.0003) 

0.0554*** 
(0.0004) 

U 
0.0071*** 
(0.0010) 

0.0035*** 
(0.0010) 

0.0145*** 
(0.0010) 

Gumbel 
copula 

RoRtE 0.0802*** 
(0.0004) 

0.0701*** 
(0.0004) 

0.0575*** 
(0.0004) 

V 
1.0000*** 
(7.22E-6) 

1.0000 
(7.7E-6) 

1.0000 
(0.0000) 

Standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1. 

 

 
8 Estimation of this specification under the Student copula assumption yields strange results. We believe this is 
due to the specific sample that is used to estimate this specification. This, in turn, resulted in the log-likelihood 
maximization algorithms we have considered being unable to reach a global maximum. 
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Like the Gaussian copula, the Student copula is elliptical so that the correlation coefficient is a 

flexible measure of the structure of dependence. In both cases, if the correlation coefficient is, 

say, negative, then the tails of the joint distribution with young school leaving ages and positive 

error terms and with old school leaving ages and negative error terms would be fatter than the 

tails on the other corners of the joint distribution. However, even for the same value of the 

correlation coefficient, the Student copula with a relatively small number of degrees of freedom 

will always show fatter tails than the Gaussian. This to say that if the data suggest that pairs of 

extreme values of the two variables under consideration are more frequent (with greater tail 

probability mass) than suggested by the Gaussian copula, then the Student copula is a 

reasonable alternative to consider. 

The results in Table 4 show that the estimated number of degrees of freedom is quite large. 

With the exception of specification 7/8 from Angrist and Krueger’s (1991) Table 8, it is 

systematically above 20. Such a large number suggests that the tails of the joint distribution of 

school leaving age and the error term are not that fat and therefore that the Gaussian copula is 

an equally acceptable description of the structure of dependence in the data. The results also 

confirm that despite the estimated correlation coefficient between school leaving age and the 

error term is now almost six times larger than suggested by the Gaussian copula hypothesis, it 

remains negative and very modest in absolute value (around -0.06), again suggesting 

endogeneity of school leaving age is not severe. It is interesting to note that the estimated RoRtE 

under the Student copula hypothesis is even slightly smaller (5.24%) than its OLS counterpart 

(5.97%).  

We have also considered two Archimedean copulas, namely the Gumbel copula and the Clayton 

copula. The corresponding results are reported in the lower rows of Table 4, Panel A and Panel 

B.9  

The bivariate Gumbel copula with parameter, t ∈ [1, +∞[, is given by : 

?:;,<(B#, B$) = exp[−((− lnB#)< + (− lnB$)<)
(
<] 

 
9 An Archimedean copula is one that is generated using a function, $, called a generator, that meets the conditions of the 
following theorem. Given a function $: [0,1] → [0,+∞], that is continuous and strictly decreasing over [0,1] and such that 
$(1) = 0, the function : 

0(1$, 1%) = 2$
&$3$(1$) + $(1%)4	67	0 ≤ $(1$) + $(1%) ≤ $(0)
0, 																																67	$(0) < $(1$) + $(1%) <∞

 

is a copula iff $ is a convex function.  
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It is useful for the modelling of dependence structures yielding more probability mass or larger 

dependence on the right of the joint distribution. More specifically, it simplifies to 

independence copula for t = 1 but as t	gets larger, it tends towards the comonotonicity copula, 

yielding tail dependence to the right of the joint distribution. It therefore allows a potentially 

more satisfactory modelling of those who have higher ability and extra-long participation in 

further education. Another property of the Gumbel copula that is worth noting is the relationship 

that exists between the copula parameter, t, and the Kendall’s rank correlation coefficient, w, 

between the two variables the structure of dependence of which is described by the copula: 

t =
1

1 − w
. 

The results reported in the last row of Table 4, Panel A and Panel B, suggest an estimate of the 

parameter t of 1, meaning Kendall’s rank correlation coefficient, w, between school leaving age 

and the error term is not significantly different from 0. Like the Gaussian and then the Student 

copula hypotheses, the Gumbel copula specification also indicates independence between 

schooling, our endogenous regressor, and unobservable characteristics. Again, this is perhaps 

the reason why the resulting estimate of the RoRtE is similar to its OLS counterpart. 

The bivariate Clayton copula with parameter, x ∈ [−1,+∞[ − {0}, is given by : 

y=>,?(B#, B$) = @max|(B#)'? + (B$)'? − 1,0}A
'(? 

It is useful for the modelling of dependence structures yielding more probability mass or larger 

dependence on the left of the joint distribution. A value of x = −1 indicates 

countermonotonicity. As x tends to 0, the structure of dependence approaches independence 

and as x tends to infinity, the structure of dependence becomes more and more comonotonic. 

In contrast to the Gumbel copula, the Clayton copula allows a potentially more satisfactory 

modelling of those on the left tail of the error term (e.g. who have lower ability) and who are 

not willing or able to invest in education beyond compulsory levels. Interestingly, the parameter 

of the Clayton copula, x, can also be linked to Kendall’s rank correlation coefficient, w, through 

the following relationship: 

x =
2w
1 − w

. 

The results reported in the middle row of Table 4, Panel A and B, suggest an estimate of the 

parameter x of 0, again meaning that Kendall’s rank correlation coefficient, w, between school 

leaving age and the error term is not significantly different from 0. Like the Gaussian, the 
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Student and the Gumbel copula hypotheses, the Clayton copula specification also provides 

some support for independence between schooling and unobservable characteristics. 

Accordingly, the resulting estimate of the RoRtE is again not so different from its OLS 

counterpart. 

The major finding of this section which is of importance is that the distributional form of the 

copula used does not seem to make much difference – irrespective of whether one puts weight 

in the tails or asymmetrically in one tail – the results do not differ much from the Gaussian 

copula. This is a substantive finding which speaks to the robustness of our results to the charge 

that they may depend on the precise form assumed on the copula. 

 

6. Implications and Conclusions. 

While the rate of return to education is one of the most important policy relevant parameters, 

its determination is a complex task due to the acquisition of schooling possibly being 

endogenous to the determination of earnings. This explains the large body of literature which 

proposed instrumenting strategies to overcome the endogeneity problem. Among these, IV and 

RDD methods have been widely used. In particular, in the last 30 years, an emphasis has been 

placed in this literature on the use of instrumental variables for schooling – notably laws relating 

to the raising of the school leaving age (RoSLA). Recently, however, there has been increased 

scrutiny of instrumental variable methods of estimation. In particular, even in the presence of a 

valid instrument, it is not necessarily clear whether one is identifying the average treatment 

effect or some specific local average treatment effect. In addition, the recent literature shows 

that IV estimates may be sensitive, not only to the chosen instrument but to the estimated model 

specification as well.   

This paper has contributed to this literature by proposing an alternative identification strategy 

that does not rely on an instrument, but rather, involes identifying the return to education under 

the assumption that full information is available to the researcher about the joint distribution of 

schooling and the unobserved determinants of earnings. Indeed, copula theory implies that such 

a joint distribution can be inferred from two basic ingredients: the marginal distributions of 

schooling and the stochastic error and secondly the structure of dependence. The method is 

flexible since it facilitates model estimation conditional on reasonable assumptions regarding 

the distribution of the error term and of dependence structure. It also allows one to check the 

robustness of the resulting estimate of the return to education to a number of variants of these 
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hypotheses. Most importantly the method, conditional on our identification assumptions, allows 

us to retrieve a direct estimate of the extent of the correlation between the years of schooling 

and the unobserved heterogeneity in the earnings equation. This may in turn be suggestive of 

whether there may be some bias in the OLS estimates.  

It is also worth noting that the data sets were chosen for their diversity which allows us to ‘stress 

test’ the estimation method. These datasets have been rigorously studied in the literature and 

resulted in influential papers published in prominent journals. Identification in each study relies 

on exploitation of different, plausibly exogenous, IVs so we are testing that our results are not 

the artefact of scrutinising only one specific IV.  

The main conclusion of using copula estimation is that the RoRtE based on the different datasets 

in different countries is around 6% for males in large representative samples (although it may 

be lower for black men and higher for twins). We consistently find that the IV estimate is around 

twice the size of the OLS estimate but that the copula estimate is most closely similar to the 

OLS estimate. This is an important result because of its implications in terms of education 

funding policies and the provision of incentives to invest in education. Interestingly, this 

estimate of 6% is not dependent on the choice of the copula. First, as our results show, the 

estimated RoRtE is  robust to specification changes. Our approach involves no direct first stage 

estimation of a schooling equation but rather lets the ‘data speak for itself’ and directly exploits 

the observed distribution of schooling. On the other hand, even modifying the distributional 

assumptions does not result in a significant variation in the estimated RoRtE. Second, the 

method is robust and applicable to qualitiatively different types of IVs whether they be the 

quarter of birth, ROSLA, father’s education or whatever.  

This paper is not alone in questioning whether the RoRtE may actually be as lower than the 8 

percent that was the received wisdom in the 1990s when Card (1999) wrote his definitive 

survey. Pischke and Watcher (2008) have found similar results for Germany – although not 

using copula estimation methods. Our results also support the case for more detailed 

examination of the results obtained by the use of IV and RDD estimation procedures.  

In conclusion, it is worth briefly reflecting on the policy context of why our result may be 

important. It is widely understood that the optimism of the 1990s regarding the returns to 

education contributed to the political context in which governments sought a rapid expansion 

of higher education. These priorities were justified at the time because the leading economists 

of the day were suggesting that the return to an extra year of education in the USA could be 
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13% (Card, 1995 and Angrist and Kreuger, 1991), or in the UK could be as high as 15% 

(Harmon and Walker, 1995) or that the return to a degree could be as high as 27% (Blundell 

and Dearden, 1999).  In policy terms such an option is a ‘win-win’.  If young people could be 

encouraged to go on to higher education they would reap the rewards personally in terms of the 

financial investment – but so would the public exchequer in terms of future tax revenue. 

The potential implications of this investigation are twofold. Firstly, that we need to be cautious 

in our claims for single policy parameter estimates when they are based on specific IV/RDD 

estimation with strong identification assumptions. Secondly, we may be reassured as 

economists by the 6% RoRtE we get as it vindicates much of our simpler earlier analysis from 

OLS estimation.  
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APPENDIX A.   Data in the Papers Examined 

For the analysis of this paper we rely on data from other prominent published papers.  In guiding our 

choice of paper, we needed the paper to be published in a highly reputable top ranked general or field 

journal and the data to be available on the author’s own website in three cases, namely: Card (1995), 

Angrist & Krueger (1991) and Ashenfelter & Rouse (1998). In one case, HBT (2012) we obtained the 

data directly from the authors. In the case of the Harmon and Walker (1995) paper we replicated the 

data sample extraction from the raw survey data. so that we could be sure to be able to replicate their 

original estimation. 

The choice of data set and paper was also guided by the fact that we which to explore the effect of 

different IV variables – in our selected papers we have five very different IVs which genuinely reflect 

the diversity of instruments which have been variously used in the literature.  It was thought that the 

potential for the more suitable use of the IV estimation technique may depend on how likely it was that 

the IV chosen was not correlated with the unobserved heterogeneity in the earnings equation.   

Finally, we wished our data to be taken from different countries – in our case: the USA, UK and 

Germany and to have an array of different sample sizes and other possible available controls for the 

earnings equation.  Our sample sizes vary from 658 in the case of Ashenfelter & Rouse (1998) to 329,509 

in the case of Angrist & Krueger (1991). 

The basic characteristics of the datasets used are summarized in the Table A1 below.  Further details of 

these data are available in the original papers cited in the references. Three features of our comparative 

datasets are worth mentioning.  Firstly, two of the datasets contain men and women, namely those 

studied by Ashenfelter & Rouse (1998) and HBT (2012) whilst the others use data from men only. 

Secondly, one dataset is a census dataset which contains limited personal conditioning regressors, 

namely that by Angrist & Krueger (1991) whilst the others are based on survey data with many richer 

individual co-variates. Thirdly, it should be pointed out that our different data come from very different 

time periods – the earliest having been sampled between 1966 and 1970 and the latest sampled only in 

2004.  

A further consideration in our choice of sample was to try to include less representative datasets to see 

how far our findings could be generalizable to other less typical data.  This aim is realised by the use of 

the Angrist & Krueger (1991) subsample of only black men in their Table VIII.  Here we see that the 

RoRtE is substantially lower at around 0.045.  The second atypical sample we use is the data from 

Ashenfelter & Rouse (1998) which uses only identical twins. A major reason they are atypical is that 

they have around a year’s worth more of education than the population at large. Here we find the RoRtE 

is much higher at around 0.12.  This is undoubtedly due to the non-representative nature of the twins 

sample. 
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Table A1. Data Characteristics from Datasets Used. 

 Survey 
Source 

Date of 
Survey 

Original Sample 
Size/Subset 
Criteria 

Observations IV 

Author(s)  
Card (1995) US – 

National 
Survey of 
Young Men 
(NSLYM) 

1966 5525 men aged 
14-24. Valid 
Wage and 
Education Data 

3010 Proximity to 
College 

Angrist & 
Krueger 
(1991) 

US Census 
data, 1970, 
and 1980 

1970, 1980, Men born  
For Table IV: 
1920-1929 
For Table VIII; 
Blacks, 1930-39 

247,199 
 
 
26,913  
 

Quarter of 
Birth 

Ashenfelter 
& Rouse 
(1998) 
 

US Survey 
of Identical 
Twins 

1991-93 Identical Twins 658 Other Twin’s 
Years of 
Education 

Harmon & 
Walker 
(1995) 

UK – 
Family 
Expenditure 
Survey 

1978-1986 Employed males 
18-64. 

34,33510 Raising of 
the School 
Leaving Age 
Reform. 

Hoogerheide, 
Block, and 
Roy.  (2012) 

German 
Socio-
Economic 
Panel 
(SEOP) 

2004 Male and Female 
employed. 

8,244 Father’s 
Education. 

 

The logic for investigating: very different sample sizes; data from different countries; data collected in 

different ways; data from non-representative as well as a representative sample;  data which had different 

sets of regressors available to it; and data which exploited different IVs, is that we wished to establish 

that our conclusions about the use of the Copula estimator are robust to different circumstances and 

hence establish some reasonable degree of external validity for our findings. 

 

  

 
10 In the original Harmon and Walker (1995) paper they had 34,336 observations. Since we replicated their data extraction 
from scratch but could not match their observation sample count exactly.  However, with only one observation missing we 
were able to replication all their estimation results to within 3 decimal places. See Dolton and Sandi (2017) for details. 
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APPENDIX B: Alternative Copulas. 

The Student copula 

Let Q denote Spearman’s coefficient of correlation between our endogenous regressor, ,! and 

the structural error term, -! . The bivariate Student copula with h degrees of freedom could be 

written as : 

?
~
h, Q(B#, B$) = �6,& js

−1
h
(B#), s

−1
h
(B$)k 

�6,& is the bivariate Student CDF with h degrees of freedom while s6 is the univariate Student 

CDF with h degrees of freedom. 

The joint density function of ,! and -! (the analogue to equation (6)) is then given by: 
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and the corresponding log-likelihood function (the analogue to equation (7)) is 
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The Gumbel copula 

The generator of the Gumbel copula is (see footnote 7): 

É:;,<(Ñ) = (− ln Ñ)< , 		t ∈ [1, +∞[ 

so that the bivariate Gumbel copula with parameter, t is given by : 
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?:;,<(B#, B$) = exp[−((− lnB#)< + (− lnB$)<)
(
< . 

t =
1

1 − w
 

where w	denotes Kendall’s correlation coefficient of ,! and -!. 

This yields the following expression of the joint density function of ,! and -! (the analogue to 

equation (6)): 
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and therefore to the following log-likelihood function (the analogue to equation (7)) 
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The Clayton copula 

The generator of Clayton copula is (see footnote 7): 

É=>,?(Ñ) =
1
x
@Ñ'? − 1A, 		x ∈ [−1,+∞[ − {0} 

The bivariate Clayton copula with parameter, x is then: 

?=>,?(B#, B$) = @max|(B#)'? + (B$)'? − 1,0}A
'(? 

x =
2w
1 − w

 

where w	denotes Kendall’s correlation coefficient of ,! and -!. 
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The joint density function of ,! and -! (the analogue to equation (6)) is then given by 

:(,! , -!) = (x + 1)@B#,!B$,!A
'(?7()

@B#,!
'? + B$,!

'? − 1A
'%?7(? ℎ(,!)I(-!),	 

whereas the corresponding log-likelihood function (the analogue to equation (7)) is :  
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APPENDIX C: The Distribution of Errors in the Earnings Equation. 

In the estimates in section 4 of this paper we have assumed that the error in the earnings (w) 

equation (of regressors (@) is Normally distributed for our benchmark Copula estimation. The 

pertinent questions here are: is this likely to be a valid assumption and what happens if the 

assumption is not valid. 

By Bernstein’s Theorem, if ((, (%, …… . (@ are independent Normally distributed random 

variables, then  

ràA(A

@

A9(
	~	ℕ 

where àA is a set of fixed constants. Furthermore, if earnings % are lognormally distributed then 

ãåI(%) will be Normally distributed. The best available empirical evidence on the distribution 

of earnings concludes that it is Lognormally distributed with a Pareto tail (Harrison, 1981). The 

presence of this possible fat tail could advance the claim for us to model the resulting 

distribution of - as having fat tails. This we do with a Student’s t distribution in Section 5.2 in 

the paper. 

In this case, since the difference between two Normally distributed variables is also Normal we 

may suggest that: 

ãåI(%) − () = -	~	ℕ 

In the event that ((, (%, …… . (@ are not independent Normally distributed random variables 

then we may appeal to the Lindberg-Levy Central Limit Theorem11 to suggest that in large 

samples, 

∑ àA(A
@
A9( 	

B5C	
é⎯ê ℕ, 

 
11 See White (1984), p64-65. 
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i.e. that the sum of the predicted regressors multiplied by their OLS estimated coefficients is 

asymptotically Normal.12 

Or as Johnston explains13, in the event that the assumption that - cannot be assumed to be 

Normally distributed then it is approximately true in large samples “by making no explicit 

assumption about the form of the distribution and appealing to the Central Limit Theorem to 

justify our regarding the tests as approximately correct.” 

Another logic regarding the distribution of % is to reflect on the result that the product of 

Normally distributed random variables is LogNormal. Lydall (1968) provides the logic and 

rationale to suggest that if the conditioning variables in the determination of earnings act not in 

a linear additively separable way but in the form of multiplicative interactions then the resulting 

product – in this case earnings – may be distributed as Lognormal. Such results generate an 

interest in modelling ‘fat tail’ distributions as a logical alternative as we do in our robustness 

checks. 

 

 

 

  

 
12 See Feller (1957) pp 229, 238-241 or Theil (1971) p370 for details. 
13 See Johnston (1972) p135-6. 
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APPENDIX D: Comparing the distribution of S and S* 

Our strategy to identify the parameter of interest, H, relies on copulas as a means of modelling the 

structure of dependence between the structural error term, (!, and the endogenous variable, &!. As shown 

on page 9, maximization of the log-likelihood given in equation (7) is equivalent to estimating, through 

least squared methods, the augmented specification (9) where the term below is included instead of (! 

A' ∙ 3 ∙ &!
∗ + A' ∙ J1 − 3" ∙ KL",! 

where ,∗ = Φ'((B#) and  KL",! = 0(0,1). 

Importantly, the additional regressor, &!
∗, is, by construction, drawn from the normal distribution 

where 9%,! is nothing but X(&!), X(∙) denoting the empirical CDF of &. Therefore, if & were normally 

distributed, the parameter H would not be identifiable, as in this case, we would have &!
∗ = Φ#$89%,!: =

Φ#$8Φ(&!): = &!. 

It is therefore important to show that &! significantly departs from the normal distribution and, 

consequently, from &!
∗ which is again drawn from the normal distribution. We first conduct several tests 

the null of which is the assumption that & is normally distributed; namely the Kolmogorov-Smirnov test, 

the Cramer-von Mises test and the Anderson-Darling test. The results are reported in Table D1 below 

which also reports basic descriptive statistics as well as the results from the Shapiro-Wilk test when 

using the sample from the Ashenfelter and Rouse (1998) study where the sample size is 680 observations 

only. For the five data sets under consideration, these tests unanimously suggest the rejection of the 

normality hypothesis at the 1% level. 

We also produce quantile-quantile plots as a means of highlighting the extent to which the schooling 

variable, departs from the normal distribution in each of the five data sets that we examine. These are 

reported on the left of Figure D1 below where each individual QQ-plot contrasts the percentiles of the 

distribution of the standardized (zero-mean and unit variance) version of & (on the vertical axis) to the 

percentiles from 0(0,1) (on the horizontal axis). The resulting figures highlight the discrete nature of & 

in each case, but also the fact that in each of our five datasets and for both plots we see a meaningful 

departure from the 45 degree line. This indicates that in each case the schooling variable is significantly 

different from Normal.. Moreover, in each case the nature of the departure is different. In the case of the 

Harmon and Walker, Card and Angrist and Kreuger data, the departure is mainly in the extreme left tail 

and after the zero point. In contrast in the Ashenfelter and Rouse and HBT data the departure is more 

specifically at various definite points in the support of &. 

In addition, we investigate the relationship between & and &∗. One means of highlighting the differences 

between these two variables is by drawing QQ-plot-like diagrams where the two variables are contrasted 
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with each other. To be more specific, for each observed value &! 	of &, we are able to empirically compute 

the corresponding cumulative frequency, 9%,! as well as the corresponding value &!
∗ = Φ#$89%,!:; that 

is the percentile of the normal distribution that corresponds to 9%,!. Also, to make the comparison of & 

and &∗ easier, we normalize the former. The resulting diagrams are reported to the right of Figure D1. 

Again, for any given observed percentile, departure from the 45 degree line reveals the difference 

between & and &∗ and, in a sense, the extent of departure of & from normality. 
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Figure D1: Comparing the distributions of & and &∗. 

&(0,1) vs. 0(0,1) &(0,1) vs. &∗ 

Angrist & Krueger (1991) 

  

Card (1995) 

  

Harmon & Walker (1995) 

  

Ashenfelter & Rouse (1998) 

  

Hoogerheide et al. (2012) 
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TABLE D1: Normality Test on Schooling by Dataset. 

Authors 
Descriptive Statistics Normality Tests 

Variable N. Obs. Mean S.D. Skewness Kurtosis Kolmogorov-
Smirnov 

Cramer-
von-Mises 

Anderson-
Darling 

Shapiro-
Wilk 

Angrist & Krueger 
(1991) 

Yrs of Sch. 247,199 11.49 3.36 -0.26 0.36 0.1648*** 
(0.0100) 

880.67*** 
(0.0050) 

4158.99*** 
(0.0050) 

- 

Card (1995) Yrs of Sch. 3,010 13.26 2.68 -0.23 0.28 0.1762*** 
(0.0100) 

14.27*** 
(0.0050) 

73.78*** 
(0.0050) 

- 

Harmon & Walker 
(1995) 

Age left ed. 34,353 16.16 2.20 1.69 2.36 0.2831*** 
(0.0100) 

465.26*** 
(0.0050) 

2637.3*** 
(0.0050) 

- 

Ashenfelter & Rouse 
(1998) 

Yrs of Sch. 680 14.03 2.07 0.42 -0.91 0.1876*** 
(0.0100) 

4.60*** 
(0.0050) 

29.64*** 
(0.0050) 

0.8898*** 
(0.0001) 

Hoogerheide et al. 
(2012) 

Yrs of Sch. 8,244 13.03 2.77 0.69 -0.76 0.2365*** 
(0.0100) 

72.05*** 
(0.0050) 

434.81*** 
(0.0050) 

- 

 

 


