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Abstract

For an incompatible patient-donor pair, kidney exchanges often forbid receipt-before-donation
(the patient receives a kidney before the donor donates) and donation-before-receipt, causing a
double-coincidence-of-wants problem. We study an algorithm, the Unpaired kidney exchange
algorithm, which eliminates this problem. In a dynamic matching model, we show that waiting
time of patients under the Unpaired is close to optimal and substantially shorter than widely used
algorithms. Using a rich administrative dataset from France, we show that Unpaired achieves
a match rate of 63 percent and an average waiting time of 176 days for transplanted patients.
The (infeasible) optimal algorithm is only slightly better (64 percent and 144 days); widely used
algorithms deliver less than 40 percent and at least 232 days. We discuss a range of solutions that
can address the potential practical incentive challenges of the Unpaired. In particular, we extend
our analysis to an environment where a deceased donor waitlist can be integrated to improve the
performance of algorithms. We show that our theoretical and empirical comparisons continue to
hold. Finally, based on these analyses, we propose a practical version of the Unpaired algorithm.
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1 Introduction

Transplantation is the treatment of choice for kidney failure. Yet, all around the world, many
people struggle with dialysis while enduring long waits for transplantation and imposing substantial
healthcare costs on society,1 with many thousands of patients dying each year, all due to the shortage
of compatible organs. Kidney exchange is a recent innovation addressing this issue, especially when
there are incompatible patient-donor pairs. An incompatible pair is formed when a donor is willing
to donate a kidney to a patient but is unable to do so because she is biologically incompatible with
the patient. Between two such pairs, if the donor of each pair is compatible with the patient in the
other pair, the two pairs can exchange donor kidneys. While ingenious, this leads to the well-known
“double-coincidence-of-wants” problem—you not only have to have the kidney that I want, but also
have to want the kidney that I have (Jevons, 1885).

To overcome the double-coincidence of wants problem, we propose a new matching algorithm—
Unpaired kidney exchange. In essence, we create a marketplace where patient i can receive the
(compatible) kidney of donor j, even if donor i’s kidney is not compatible with patient j. When
such a trade happens, patient j will be categorized as an unpaired patient, meaning that she has
the right to receive a kidney in the future. At the same time, donor i be categorized as an unpaired
donor, meaning that her kidney can be given to some other patient in future.

To convince policymakers to adopt this algorithm, we shall provide an answer for at least the
following three questions: First, is this algorithm going to meaningfully outperform the currently
used algorithms? By answering this question, our analysis will also quantify the benefits of relaxing
the simultaneity constraints embedded in most kidney exchange algorithms. Second, given that
it allows for receiving a kidney before donating one and vice versa, is it an incentive-compatible
proposal? And third, is it morally acceptable or does it involve repugnance considerations?

This paper provides a comprehensive theoretical and empirical investigation of the Unpaired
algorithm to answer the first and second questions, and briefly discusses the third one. Section 2
develops a dynamic kidney exchange model with two types of patients. Patient-donor pairs arrive at
some rate n. A fraction λ of patients are hard-to-match and the rest, 1−λ, are easy-to-match. Hard-
to-match and easy-to-match patients are compatible with a random donor with probabilities pH and
pE , respectively, where pH < pE . This two-type assumption is a reasonable approximation to the
continuous but bimodal distribution of match probability among the patients in kidney exchange in
the U.S. and in France.2 Patients and donors stay until they are matched. The planner, everything
else equal, wishes to match patients with donors as quickly as possible. Hence, the main objective
of interest is minimizing the average waiting time of patients.

1The U.S. Medicare’s dialysis cost in 2020 was nearly 1 percent of the entire federal bud-
get.Dialysis cost is obtained by summing spending on dialysis (https://usrds-adr.niddk.nih.gov/
2022/end-stage-renal-disease/9-healthcare-expenditures-for-persons-with-esrd) and spending
on drugs for ESRD patients (https://usrds-adr.niddk.nih.gov/2022/end-stage-renal-disease/
10-prescription-drug-coverage-in-patients-with-esrd). The U.S. federal budget for 2020 is available
here: https://www.cbo.gov/publication/57170.

2This is shown at least graphically in Ashlagi et al. (2019) for the case of the U.S. For France, we run the DIP test
(Hartigan and Hartigan, 1985) and fail to reject the hypothesis of bimodality.
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The Unpaired algorithm works as follows: whenever a new patient-donor pair arrives, match
the patient to a compatible donor (if any), and match the donor to a compatible patient (if any),
breaking ties in favor of hard-to-match patients.

To evaluate the (relative) performance of the Unpaired algorithm, we study three alternative
matching algorithms. The first—the Pairwise algorithm—matches two patient-donor pairs whenever
they are pairwise compatible. The second—the Chain algorithm—starts with a finite number of
altruistic donors and matches patients with donors whenever there exists a chain of donations starting
with an altruistic donor. These two algorithms and some combination of the two correspond to the
state-of-the-art algorithms used in most countries. The third—the Optimal algorithm—minimizes
patients’ average waiting time in the class of all matching algorithms.

We prove the following results, all in the regime that pH is small: First, the Unpaired algorithm
substantially outperforms the Pairwise algorithm. In particular, if the majority of patients are hard-
to-match (i.e., λ > 1/2), the ratio of the waiting times under the two algorithms is O(1/pH). Even
if there are more easy-to-match pairs (λ < 1/2), Unpaired still outperforms Pairwise. For instance,
when only 30 percent of patients are hard-to-match, the waiting time of hard-to-match patients
under Pairwise is at least twice as long as under Unpaired.

Second, the Unpaired algorithm outperforms the Chain algorithm; in particular, if the fraction of
hard-to-match patients (λ) is large, the Chain algorithm’s performance becomes substantially worse
than Unpaired. For instance, if 60 percent of patients are hard-to-match, the Unpaired algorithm
matches hard-to-match patients nearly twice as fast as Chain.3

Finally, we compare the Unpaired algorithm with the Optimal algorithm. We prove that the
Optimal algorithm’s waiting time is at least 50 percent of that under the Unpaired algorithm. Note
that the Unpaired algorithm matches patients and donors greedily, while the Optimal algorithm is
forward-looking and can in principle wait to thicken the market. This result, nevertheless, shows
that the additional gains from thickening the market are relatively small.

After presenting our theoretical results, we empirically investigate the performance and challenges
of the Unpaired algorithm in Section 3. This is necessary because our theoretical model ignores many
real-world details of the kidney exchange problem. For instance, a patient’s biological compatibility
with a donor depends on blood type and tissue type compatibilities; the compatibility realizations
are unlikely to be i.i.d. across patient-donor pairs in practice. The empirical analysis imposes no
such assumptions on compatibilities. Instead, they directly come from data.

We rely on a dataset provided by the Agency of Biomedicine (Agence de la Biomédecine), a
government agency that oversees all organ transplants in France. It covers the period of December
2013 to February 2018, including all transplants with deceased and living donors kidneys. We
identify a pool of incompatible pairs who are most likely to participate in a kidney exchange program
(KEP), i.e., the 78 pairs who participated in France’s KEP and another 508 pairs who went through

3We emphasize that this result (and only this result) is shown under the assumption that an easy-to-match patient
is compatible with all donors (pE = 1). As noted in Ashlagi et al. (2019), the Markov chain induced by the Chain
algorithm is hard to analyze. However, our simulations and those in Ashlagi et al. (2019) show that the average
waiting time under the Chain algorithm when pE = 1 is a good approximation to the average waiting time for pE < 1;
moreover, we theoretically show that the waiting time under Unpaired does not depend on pE .
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incompatible transplantation facilitated by desensitization. We then sample with replacement from
the pool to generate dynamic markets of different sizes (i.e., different arrival rates of patient-donor
pairs).4

We run simulations to compare four algorithms: Pairwise, Chain, Unpaired, and Optimal. We
evaluate an algorithm’s performance by the transplant rate (the fraction of the patients in the
simulation sample receiving a transplant in the simulation period), as well as the average waiting time
of transplanted patients. Because computing the Optimal algorithm requires additional assumptions
on the data generating process, we simulate an even better-than-optimal alternative, the Omniscient
algorithm, which assumes that the planner has perfect foresight about all arrivals in our sample
period. Given this perfect information, the planner simply minimizes the average waiting time of
patients over our sample period. The waiting time of the Omniscient is a lower-bound for the waiting
time of any algorithm, including the Optimal algorithm.

Consistent with our theoretical results, the simulations show that Unpaired performs much better
than the Pairwise and Chain algorithms. In particular, both Pairwise and Chain have a transplant
rate below 40 percent, while Unpaired obtains 63 percent. Perhaps more surprisingly, Unpaired’s
transplant rate is almost equal to the Omniscient’s rate, which is 64 percent. The same pattern
holds for waiting times of transplanted patients—248 days for Pairwise, 232 days for Chain, 176
days for Unpaired, and 144 days for Omniscient. We show that these findings are not driven by the
small size of the French KEP, as we find similar results for a wide range of market sizes.

After showing that the Unpaired algorithm can perform substantially better than the typically
used algorithms, we turn into our second main question: Is it incentive compatible? The Unpaired
algorithm comes with two practically relevant incentive concerns. First, because of donation-before-
receipt, a patient whose intended donor already gave his kidney may wait for a long time after her
paired donor’s donation. In our main simulation of a market the size of the French KEP (on average
83 pairs), the median waiting time among the 29 unpaired patients after their donors’ donation is
245 days. A pair may find it unacceptable to donate a kidney in exchange for a kidney that may
arrive so late. Second, due to receipt-before-donation, a donor may wait for a long time after her
paired patient’s transplantation, increasing the chance that she reneges or becomes unfit to donate.
In our main simulation, the median waiting time among the 26 unpaired donors after their patients’
transplant is 339 days.

Similar challenges also exist in some current practices that are related to the Unpaired algorithm.5

The first concern exists in the “voucher" programs in the U.S. (Veale et al., 2017). Donors in these
programs donate their kidneys in exchange for a future kidney promise. Notably, some of their
paired patients are not in an urgent need for a kidney, while some may not ever need one—their
voucher will be used only if a member of their family needs a kidney. Yet, many donors are willing
to participate. In addition, our simulations show that the long waits of unpaired patients are largely
due to the small market size, as they decrease significantly with size in our simulations. This makes
us cautiously optimistic that the first concern may not be binding in practice.

4We discuss robustness checks with respect to the pool from which we sample our pairs in footnote 29.
5See Section 5 for a detailed discussion of the connections.
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The second concern—that unpaired donors may renege—is a challenge in the current practice of
the Chain algorithm, where a donor donates only if his paired patient has already received a kidney.
Data shows that such donors rarely renege. Through simulations, we show that even renege rates as
high as 10 times of that assumed in the medical literature (Gentry et al., 2009), or 30 times of the
rate documented among bridge donors in a chain (Cowan et al., 2017), do not significantly affect
the performance of Unpaired. This also makes us optimistic that the Unpaired algorithm may not
encounter serious practical risk.

Having said that, the incentive challenges discussed may still be seen as obstacles, especially for
small markets in which they are more prominent. Hence, we next propose a practical solution by
taking advantage of the flexibility of the Unpaired algorithm to introduce modifications that can
(almost) fully address these concerns. The key idea is to use the kidneys supplied to the deceased
donor list (DDL). We propose a modified Unpaired algorithm—Unpaired with DDL—under which
patients who do not get matched with a compatible living donor upon joining the KEP will be offered
both arriving kidneys from living donors as well as arriving DDL kidneys. To ensure this proposal
does not hurt patients who are waiting in the DDL, where a KEP patient is matched to a DDL
kidney, a living donor waiting in the KEP will have to donate his kidney back to a patient waiting
on the DDL. The last part of the paper analyzes this algorithm, theoretically and empirically.6

First, we extend our dynamic matching model to allow for arrivals of deceased donors. We show
that all the theoretical results of Section 2 comparing Unpaired, Pairwise, and Optimum extend to
this new environment where all algorithms have access to DDL kidneys. An interesting theoretical
property of the Unpaired with DDL is related to the comparative static of increasing the arrival rate
of pairs, keeping the arrival of DDL kidney fixed. In this case, there can be more competition for
DDL kidneys from paired patients, and thus the waiting times of patients may become longer. We
theoretically prove that the waiting time of patients under Unpaired with DDL decreases when the
arrival rate of pairs increases. Importantly, this is not necessarily the case for Pairwise with DDL:
we show that the waiting time of patients under Pairwise with DDL may increase when the arrival
rate of pairs increases. Hence, if the good performance of Unpaired successively attracts more pairs
into the system, the performance will not be jeopardized.

Next, we empirically investigate the Unpaired with DDL. We take the arrival of DDL kidneys in
our data as given and only offer high-quality DDL kidneys (based on the commonly used kidney donor
profile index ) to patients. Both Pairwise and Unpaired algorithms have a significantly improved
performance in their versions with DDL: in a market similar to the French KEP, the mean waiting
time of patients is reduced by about 88 to 91 percent. Consistent with our theoretical results, the
Unpaired still performs better than the Pairwise, and is very close to the Omniscient. In addition,
Unpaired with DDL is more favorable than Pairwise with DDL to O patients who typically have the
longest waiting times (Glander et al., 2010).

Our empirical counterfactuals also show that the two aforementioned practical challenges are
6As we will see the use of DDL kidneys will help alleviating the two aforementioned incentive issues. While we

do not formally investigate this, it also serves another purpose which is to incentivize patient-donor pairs to join the
KEP.
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successfully addressed: the median waiting time for unpaired patients and donors is 50 days and 65
days, respectively. Again, these waiting times decrease sharply as market size grows.

There is, however, a negative unintended consequence for the Unpaired with DDL algorithm.
Precisely because this algorithm is fairly successful in matching patients quickly to a living or
deceased donor, it does not provide enough incentives for patients to find easy-to-match donors. A
patient who has two potential donors in the family with blood types O and AB gets no reward for
bringing the O donor, since in any case she is likely to be matched to a deceased donor quickly.
And, in fact, she may prefer to bring the AB donor to reduce the probability of her donor ending
up donating a kidney.

This concern motivates us to consider a version of Unpaired with DDL that we propose as the
final and most practically plausible solution, the Unpaired with DDL with delay δ : In the Unpaired
with DDL algorithm, each patient is required to wait for δ months before receiving any DDL kidney
offers, but a patient whose donor has already donated can receive DDL kidney offers immediately.
This modified version provides incentives for patients to find a donor who is likely to donate soon
to a patient in the KEP (e.g., an O donor who is likely to be compatible with many patients), so
that they can receive high-quality DDL kidneys earlier.

In our simulations, we find that the algorithm with δ = 6 months can address all the practical
concerns that are discussed above. In a market similar to the French KEP, (i) it matches 55 percent
of patients with a living donor, hence increasing the incentive to bring a good donor to get matched
earlier, (ii) a median unpaired patient only waits for 6 days before receiving a kidney, and (iii) a
median unpaired donor waits 39 days in donating a kidney.

We close this section by discussing the third main question: Is our proposal morally acceptable?
To answer that, let us first remind that economists have previously proposed a solution to the
kidney shortage: legalizing the exchange of money for kidneys (Becker and Elias, 2007). Such a
market would resolve the double coincidence problem by allowing a donor to sell her kidney to
any patient and permitting a patient to buy a kidney from any donor. Second, a kidney market
will likely increase the supply of donors.7 While a kidney market is appealing to some economists,
many people find it repugnant. Roth (2007) lists three reasons why a kidney marketplace might be
repugnant. First, giving a kidney to a loved one is intrinsically good, while giving one for money may
be morally wrong because it objectifies the human body. Second, it is likely that disproportionately
many poor people would sell a kidney, and this may be viewed as coercive. Third, a marketplace
for kidneys can be a slippery slope into more ethically dubious arrangements, for example, those in
which debtors could be forced to give a kidney in bankruptcy proceedings. We do not take a stance
on whether a marketplace for kidneys is repugnant, but simply note that it is illegal everywhere in
the world except Iran today, and that changing the law is probably not politically feasible in most
countries.

7Indeed, in the only legal kidney market in the world in Iran, there is a large supply (nearly 45% of kidney donors
are paid living donors), which in turn has led to low transplant waiting times for kidney patients (less than one year).
A drawback of the market is that it has almost completely crowded out family donations. See Akbarpour et al. (2019)
for a detailed analysis of the Iranian market for kidneys.
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Recall that the Unpaired algorithm creates a marketplace where patient i can receive the kidney
of donor j, even if donor i’s kidney is not compatible with patient j. When such a trade happens, one
interpretation is that pair j receives a +1 token, meaning that the patient j has the right to receive
a kidney in the future. At the same time, pair i receives a −1 token, meaning that donor i’s kidney
can be given to some other patient in future.8 However, we believe the Unpaired algorithm, by
design, avoids encouraging kidney donation for pecuniary benefits, thereby avoiding the repugnance
concerns associated with a kidney market. Donors give kidneys because they love someone who
needs one, not because of money. Poor people cannot sell a kidney. Creditors cannot demand a
kidney in return for discharging a debt. Technically, the key difference between money and tokens
is fungibility. The fungibility of money allows for potentially repugnant uses. The fact that tokens
are non-fungible and attached to a specific patient or donor means that society can control how it
is used to avoid concerns about repugnance.

1.1 Related work

The economics literature on kidney exchange starts with Roth et al. (2004). In a subsequent paper,
Roth et al. (2007) demonstrate the efficiency gains of creating a large kidney exchange, as well as
those from allowing 3-way or larger cycles.

The double-coincidence-of-wants problem has been a known challenge since the beginning of
kidney exchange. We now review the two approaches that have been used to tackle it in practice.

The first approach is to create a sufficiently thick market:

And we will show that, even without a medium of exchange, if the market is thick enough,
the problem of the coincidence of wants can be substantially ameliorated by the organiza-
tion of an appropriate clearinghouse. (Roth et al., 2007)

A KEP grows when more incompatible pairs join the market. More recently, Sönmez et al. (2020)
propose an incentivized system for compatible pairs to participate in an exchange. More specifically,
the system “rewards” compatible pairs participating in the KEP with a high priority on the DDL
once they need a repeat transplant in case of a kidney failure. This will not only increase the market
thickness, but also change the composition of patients and donors in the KEP. In turn, this may
help blood-type O patients who have a hard time finding a match.

Similar to the literature, our simulation confirms these results. Every algorithm’s performance
improves when the market is thicker. Yet, except for Unpaired, none of the state-of-the-art algo-
rithms are close to the Optimal algorithm, while the advantages of Unpaired remain even when the
KEP is three times larger than the largest one in the world (i.e., the NKR in the U.S.) and when
some compatible pairs participate in the KEP. In this sense, the Unpaired algorithm is a way to

8A donor giving his kidney today provides a favor in exchange of which the associated patient obtains a +1 token.
This token entitles the patient to receiving a kidney/favor at some future date. This defines an exchange rate between
current donation and future donation. This is reminiscent of “chip strategies" introduced by Möbius (2001) in the
context of a favor-exchange model.
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reach the full potential of a KEP of any given size with any other incentive schemes (such as the
incentivized-exchange policy of Sönmez et al. (2020)).

The second approach is to authorize non-simultaneous exchanges by allowing receipt-before-
donation or donation-before-receipt. Non-simultaneous altruistic donor chains (Roth et al., 2006)
allow for receipt-before-donation. A chain is initiated by an altruistic donor who donates a kidney
to a patient whose paired donor then donates to another patient, and so on. Transplants may
happen simultaneously or sequentially. Nowadays, such chains account for a large fraction of kidney
exchange transplants. By allowing receipt-before-donation, a chain need not form a closed loop, and
thus, can alleviate the problem of double-coincidence-of-wants:

Developing the capability to arrange trades in longer cycles and chains helps overcome
this [double coincidences of wants] barrier... In the case of kidney exchange, long non-
simultaneous chains of the sort proposed in Roth et al. (2006) are proving increasingly
important. (Ashlagi et al., 2012)

While clever, the Chain algorithm confronts three practical challenges. First, its efficiency is limited
by the number of available altruistic donors. Second, in places where altruistic donation is illegal
(e.g., France and Germany), this algorithm is infeasible. Last but not the least, even with a reason-
able number of altruistic donors, it goes only half-way in solving the double coincidence problem,
because donation-before-receipt is not allowed.

Ausubel and Morrill (2014) introduce the idea of “sequential kidney exchange” that allows
donation-before-receipt but not receipt-before-donation, opposite to the Chain algorithm. They
study this in an overlapping generations model. In this sense, our Unpaired algorithm combines
Chain and sequential kidney exchange by allowing both donation-before-receipt and receipt-before-
donation.

Similar to the Unpaired algorithm is the voucher program that has been adopted by multiple
hospitals in the U.S. (Veale et al., 2017). This program allows donation-before-receipt; in particular,
a donor can donate and receive a voucher that her paired recipient can use to receive a kidney in
future. We compare this program with the Unpaired algorithm in Section 5.

Our theoretical model is related to those of dynamic kidney exchange. Ünver (2010) studies
a model of dynamic exchange with blood-type considerations. Akbarpour et al. (2020) consider a
dynamic kidney exchange model with stochastic departures and show that optimal timing can be
highly valuable; their focus, however, is only on pairwise exchanges. The two-type model studied
here builds on the model of Ashlagi et al. (2019), where they compare Chain and Pairwise. To the
best of our knowledge, our paper is one of the first papers offering a dynamic setting including DDL
kidneys into KEP.9 This setting may be useful for further research as well.

2 Theoretical Analysis of the Unpaired Algorithm

9A noticeable exception is Sönmez et al. (2018) who characterize—in a continuum model—match rates with
deceased/living donors as a function of some policies implemented in the KEP.
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2.1 Model

We now introduce a continuous-time, infinite-horizon model of a dynamic kidney exchange market.

Arrivals and types of patients. Incompatible patient-donor pairs arrive at the market according
to a Poisson process with rate n. There are two types of patients: hard-to-match and easy-to-match.
We refer to these types as H and E, respectively. A fraction λ > 0 of patients are hard-to-match and
a fraction (1 − λ) are easy-to-match. An H patient is compatible with any donor with probability
pH , and an E patient is compatible with any donor with probability pE . We discuss the plausibility
of this assumption in Section 2.3.10

For any t ≥ 0, let V p
t and V d

t be the set of patients and donors in the market at time t, respectively,
and St = |V p

t | and Zt = |V d
t |. Define Et ⊆ V p

t × V d
t as the set of compatible patient-donor pairs

and Gt = (V p
t , V

d
t , Et) as the (bipartite) compatibility graph at time t. We refer to Et as the set of

edges. When a new incompatible patient-donor pair vi = (pi, di) arrives at time t, edges are formed
between pi and all compatible donors in V d

t , as well as between di and all compatible patients in V p
t .

Matching algorithms. A set of edges (possibly empty) is a matching if no two edges share the
same endpoints. A matching algorithm, at any time t, selects a matching Mt in the graph Gt. The
endpoints of the edges in Mt leave the market immediately. This definition of a matching algorithm
does not require a donor di and her paired patient pi to be in the same matching. Thus, there are
algorithms that are illegal in some countries. For instance, the usual pairwise kidney exchange—
which is the only legal form of exchange in France—substantially limits the set of possible matchings:
A pairwise compatibility happens when two incompatible patient-donor pairs vi and vj are cross-
compatible; that is, there are an edge between pi and dj and another edge between pj and di. In
pairwise kidney exchange, only pairwise compatible pairs can be matched.

A matching algorithm induces a stochastic process over the number of patients of each type
remaining in the system. In this study, we restrict our attention to matching algorithms inducing
a stochastic process with a unique invariant distribution. We consider three myopic matching algo-
rithms, with the first two, the Pairwise and the Chain algorithms, from the literature (Akbarpour
et al., 2020; Ashlagi et al., 2019) and the third, the Unpaired algorithm, being the core contribu-
tion of this study. We formally prove in Appendix C.5 that the Unpaired algorithm has a unique
invariant distribution (the same argument can be used for Chains and Pairwise, see also Ashlagi et
al. (2019)).11

10In our model, agents do not take any decision on whether to join the pool of pairs. In practice, when joining the
pool agents tradeoff their waiting time to get a transplant with their outside options (e.g. desensitization). While
the analysis of participation decisions is highly non-trivial, we are optimistic that the superiority of the Unpaired
algorithm that we introduce in this paper over Pairwise and Chains will remain valid. See our discussion in the
conclusion section.

11As is well-known, at an informal level, a Markov chain over a finite state space has a unique invariant distribution
if it is possible to eventually get from every state to every other state with positive probability. In particular, starting
from any state, with positive probability, the process will be back to the very same state with positive probability.
As will become clear, this must be the case for the Markov chains induced by the algorithms we study. One issue
though is that the state space of our Markov chains are countably infinite. So to ensure existence of a unique invariant
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Definition 2.1 (Pairwise). If any new patient-donor pair vi enters the market at time t, then match
them with any cross-compatible patient-donor pair (if any), breaking ties in favor of hard-to-match
patients.12

For a pair, the Pairwise algorithm forbids donation-before-receipt (a donor donates before the
paired patient receives a kidney) and receipt-before-donation (a patient receives a kidney before the
paired donor donates). Therefore, it creates the problem of double-coincidence-of-wants.

We now introduce the Chain algorithm. Note first that it is feasible only in settings where
altruistic donors exist. The definition is taken from Ashlagi et al. (2019) and implicitly extends the
setting to allow for the existence of an altruistic donor at the beginning of time.

Definition 2.2 (Chain). There is a bridge or altruistic donor in the market at any given time.13

Consider a newly arriving pair v1 = (p1, d1). If p1 does not have an edge to the bridge (or altruistic)
donor, then no match is formed. Otherwise, a chain-segment begins with matching the bridge (or
altruistic) donor with p1 and advances as follows. First, we search for an H patient that has an edge
to d1; if there are multiple such H patients, we select one uniformly at random; otherwise, we search
for an E patient that has an edge to d1 (again breaking ties uniformly at random). With the paired
donor of the selected patient available to be matched, the process repeats among the pairs without a
selected patient, until we select a patient whose paired donor is incompatible with all never-selected
patients, forming a disjoint path. All patients and donors in the disjoint path leave the market, and
the paired donor of the last selected patient becomes a bridge donor.

Essentially, upon the arrival of a new patient-donor pair, the Chain algorithm identifies a chain
in a greedy fashion. This policy does not necessarily pick the longest chain (since it is searching in a
greedy fashion), but it does find a maximal size chain, i.e., a chain that is not properly contained in
a longer chain, and at the same time gives priority to H patients. In that respect, we follow Ashlagi
et al. (2019); we further discuss this in Remark 2.11.

For a pair, the Chain algorithm still forbids donation-before-receipt but allows receipt-before-
donation if the patient is compatible with some donor in the chain. We are now ready to introduce
the Unpaired algorithm that allows donation-before-receipt and receipt-before-donation.

Definition 2.3 (Unpaired). If any new patient-donor pair vi = (pi, di) enters the market at time
t, match pi to a compatible donor (if any), breaking ties arbitrarily, and match di to a compatible
patient (if any), breaking ties in favor of hard-to-match patients.

The Unpaired algorithm allows both donation-before-receipt and receipt-before-donation. When-
ever a pair engages in donation-before-receipt, the algorithm will match the pair’s patient, defined

distribution, one has to further guarantee that the expected amount of time to return to a state given that the chain
started in that state has finite first moment. Appendix C.5 proves this appealing to a sufficient condition provided in
Meyn and Tweedie (1993).

12Our theoretical results do not depend on the way we break ties within types. In particular, this implies that the
choice of the queueing discipline (first-come-first-served or others) within type is inconsequential for our theoretical
results.

13As in Ashlagi et al. (2019), we may assume that there are finitely many d ≥ 1 bridge or altruistic donors at any
given time. The results will remain essentially the same. See footnote 22 for details.
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as an unpaired patient, with a compatible kidney in the future. Similarly, if a pair does receipt-
before-donation, the algorithm will ask the pair’s donor, defined as an unpaired donor, to donate a
kidney in the future. In other words, for a pair, the algorithm searches for a match for the patient
while independently finding a match for the donor, as if they were unpaired. Hence, we call it the
Unpaired algorithm.

By relaxing the timing constraints on kidney donation and receipt for a pair, the Unpaired
algorithm may create two incentive issues. First, donation-before-receipt creates unpaired patients
who need to wait to receive a compatible kidney after their donors’ donation; if the wait is expected
to be long, they may opt out of donation-before-receipt or quit the KEP all together. Second,
receipt-before-donation results in unpaired donors who will wait to donate after their paired patients’
transplantation; they may renege or become unfit to donate if the wait is long. In Section 3.4, we
present an extensive empirical investigation of the consequences of these issues as well as several
solutions addressing them. In short, as shown in the empirical analysis, these issues diminish with
market size; even when some pairs opt out of donation-before-receipt or when some unpaired donors
renege, the performance advantage of the Unpaired algorithm remains; still we acknowledge that
these incentive issues may still be a concern for a policymaker, in particular, in a small KEP. In
Section 4, we offer practical solutions which can effectively address these issues.

Objective. Patients and donors stay in the market until they are matched. For a patient pi who
enters the market at time t0 and gets matched at time t1, let w(pi) = t1−t0 be pi’s waiting time. Our
objective is to minimize the average waiting time at the invariant distribution (recall that we focus
on matching algorithms inducing stochastic processes that have a unique invariant distribution). By
Little’s law, this is equivalent to minimizing the average number of patients in the system.14,15 Let
W(ALG) denote the average waiting time for a given matching algorithm ALG in steady state.
This is equal to λWH(ALG) + (1 − λ)WE(ALG), where WH(ALG) and WE(ALG) denote the
expected waiting time of hard-to-match and easy-to-match patients, respectively.

Optimal solution. In the following, we sometimes compare the performance of a matching algo-
rithm to an optimal algorithm that is a theoretical benchmark but practically infeasible. We define
the Optimal algorithm as the one achieving the smallest average waiting time that can be achieved
by a matching algorithm. Unlike the other algorithms we study, the optimal algorithm need not be
greedy, i.e., it may delay matching a patient/donor if they may help pairs arriving in the future.
Formally, we define the average waiting time achieved by the Optimal algorithm, W(Optimal), as

inf W(ALG)

14Little’s law states that the long-term average number of agents in a stationary system is equal to the long-term
average effective arrival rate multiplied by the average time that an agent spends in the system.

15Note that, unlike in Akbarpour et al. (2020), our patients and donors do not depart. This makes our analysis
less tedious, without creating any difference in the objective function. Our goal here is to minimize the total waiting
time, whereas in a model with departures the goal is a mix of waiting time and deaths. With linear waiting cost and
Poisson departures, Little’s law implies that both of these objectives are minimized by minimizing the pool size.
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where the infimum is taken over all matching algorithms (inducing a stochastic process with a unique
invariant distribution). Therefore, the optimal algorithm also induces an invariant distribution.

The optimal algorithm depends on the whole “network structure” of patients and donors; that is,
which patient is compatible to which donor at each point in time. Since the space of such networks
grows exponentially, the optimal algorithm is generally intractable. However, it serves as a valuable
benchmark.

It is intuitive that the Unpaired algorithm performs better than the Pairwise and even Chains—
after all, it allows both receipt-before-donation and donation-before-receipt, imposing fewer con-
straints on the algorithms. While this intuition turns out to be theoretically valid, it is not as
obvious as it may seem. In fact, in some realizations of the system, the Pairwise and Chain algo-
rithms outperform the Unpaired. We illustrate this with two examples: Example 2.4 is one such
scenario under which Pairwise can lead to significantly lower waiting time than Unpaired. Similarly,
Example 2.5 shows that the Chain algorithm can lead to significantly lower waiting times than
Unpaired. These examples illustrate that Unpaired may match agents “too quickly” while more
transplants could be obtained by waiting for further arrivals. However, our main results will show
that taking the average waiting times over all realizations of the stochastic process, the average
waiting time of Unpaired is significantly lower than those of the widely used practical algorithms.

Example 2.4 (Pairwise vs Unpaired). Let v1, . . . , v4, be the sequence of pairs who arrive until time
T under one draw of the Poisson process (v1 arrives first, v2 second and so on). The compatibility
graph is given in Figure 1 (panel A). Under this realization, Unpaired matches patients p1, p2 and
p4. To see why, note that when v2 arrives, p2 gets matched to d1, and when v3 arrives, d3 donates to
p1, and when v4 arrives, d2 donates to p4. On the contrary, under Pairwise v1 and v3 will perform
a kidney exchange when v3 arrives, so will v2 and v4 when v4 arrives. Hence, Pairwise matches all
the patients, performing better than Unpaired. By choosing appropriately the arrival times of future
arriving pairs, one can easily show that the average waiting time can be lower under Pairwise than
under Unpaired.

(A) Example 2.4 (B) Example 2.5
v1

v2

v3

v4

v1

v2

v4

v3

d

Figure 1: Compatibility graphs in Examples 2.4 and 2.5

Example 2.5 (Chain vs Unpaired). Let v1, . . . , v4, be the sequence of pairs who arrive until time T
under one draw of the Poisson process and let d be the altruistic donor who is in the market from
the beginning. The compatibility graph is given in Figure 1 (panel B). Under this realization, for
Unpaired, when v2 arrives, d1 donates to p2, when v3 arrives, nothing happens since p2 was already
matched earlier, and when v4 arrives, d4 donates to p1. Hence, patients 1 and 2 get matched. Under
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the Chain algorithm, no matching will happen until v4 arrives. At that point, a chain is activated.
Recall that the Chain algorithm selects a maximal chain in a greedy fashion so that several chains can
be implemented with positive probability. One such chain is the longest chain where d donates to p4,
d4 donates to p1, d1 donates to p3 and d3 donates to p2. So all patients get matched in this longest
chain. The other maximal chain skips v3 and so involves 3 patients being grafted. Thus, the expected
number of grafts under Chain is strictly higher than under Unpaired. By choosing appropriately the
arrival times of future arriving pairs, one can easily show that the average waiting time can be lower
under Chain than under Unpaired.

2.2 Theoretical Results

This section compares the average waiting time of patients at steady state under the Unpaired
algorithm with those under the Pairwise, Chain and optimal algorithms. We state our results for
the regime where pE is held constant and pH → 0. This regime should not be interpreted literally;
as discussed in Section 2.3, the type distribution has a binomial shape, and pH → 0 captures the
idea that a substantial fraction of patients have exceedingly low compatibility probabilities. In
addition, this assumption makes the analysis theoretically tractable by removing nuisance terms.
This is a standard method in random graph theory, starting from Erdős and Rényi (1960), and has
been applied in the analysis of kidney exchange graphs recently (e.g., Akbarpour et al. (2020) and
Ashlagi et al. (2019); for a more comprehensive discussion, see Ashlagi and Roth (2020)). Of course,
as pH → 0, the average waiting time of hard-to-match patients explodes. Hence, we focus on their
“normalized” waiting times, i.e., pHWH(Unpaired) (and perform a similar exercise for easy-to-match
patients). Working with normalized waiting times will prove useful to compare waiting times across
algorithms when pH is small. The following proposition characterizes normalized waiting times for
easy and hard-to-match patients under the Unpaired algorithm.

Proposition 2.6. Under the Unpaired algorithm, the average waiting time of hard-to-match patients,
WH(Unpaired), and that of easy-to-match patients, WE(Unpaired), satisfy

lim
pH→0

pHWH(Unpaired) =
ln (1 + λ)

λ · n
and lim

pH→0
pHWE(Unpaired) = 0.

Hence,

lim
pH→0

pHW(Unpaired) =
ln (1 + λ)

n
.

We prove this proposition in Appendix A. Here, we provide a sketch of the main idea behind the
proof.

Proof overview. The key step behind the proof of this theorem is to carefully study the structure
of the stochastic system induced by the Unpaired algorithm. First, note that the number of donors
in the system is always equal to the number of patients. Thus, the state of the system can be tracked
by the number of easy-to-match and hard-to-match patients that are currently in the system. For
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simplicity, let us first sketch the proof of the proposition for the case that pE = 1, which means
that whenever an easy-to-match patient arrives, she will get matched immediately.16 In this case,
the number of hard-to-match patients is a sufficient statistic for the state of the system. For sake of
simplicity, we also normalize the arrival rate of pairs to n = 1.

Suppose the total number of hard-to-match patients in the system is k. When a patient-donor
pair arrives, three events can change the state of the system17:

1. The patient is hard-to-match, and neither the patient nor the donor are compatible to anyone
in the pool. In this case, the system moves from state k to state k + 1. This happens at rate
λ((1− pH)k)2.

2. The patient is hard-to-match, and both the donor and the patient are compatible to someone in
the pool, in which case the system moves to state k−1. This happens at rate λ(1−(1−pH)k)2.

3. The patient is easy-to-match, and both the donor and the patient are compatible to someone
in the pool. Again, the system moves to state k − 1. Since pE = 1, this happens at rate
(1− λ)(1− (1− pH)k).

Thus, we are dealing with a standard birth-death Markov chain, where the birth event has rate
λ((1− pH)k)2 and the death event has rate λ(1− (1− pH)k)2 + (1− λ)(1− (1− pH)k). In the full
proof, we show that E(k) is highly concentrated around the state where the birth and death forces
balance18; i.e., E(k) ' k∗, where k∗ is the solution to:

λ((1− pH)k)2 = λ(1− (1− pH)k)2 + (1− λ)(1− (1− pH)k).

Algebraic manipulations for the case where pH → 0 lead to k∗ ' ln(1+λ)
pH

. By Little’s law, the
expected waiting time in a queue is equal to the pool size divided by the arrival rate:

E(WH) = E(k)/λ ' k∗

λ
' ln(1 + λ)

λpH

When pE < 1, we must keep track of both the number of hard-to-match and easy-to-match
patients, which makes the analysis more tedious. Since easy-to-match agents only exert a negative
externality on hard-to-match patients under Unpaired (by taking kidneys that would otherwise be
assigned to hard-to-match patients), when pE gets smaller, this can only help hard-to-match patients.
Hence, intuitively, when pE < 1, the expected number of hard-to-match patients remaining in the

16The only exception is when there are no other donors in the system. Thus, it is possible to be in the state that
there is only one easy-to-match patient and one donor in the system, but as our full analysis in Appendix A shows,
this is exponentially unlikely.

17Note that another kind of event can happen, the patient can be compatible to someone and the donor not
compatible to anyone (or the donor can be compatible to someone and the donor not to anyone). However, those
events do not modify k.

18Our proof shows this using the standard global balance condition characterizing invariant distributions of Markov
chains. While intuitive, the feature that the process concentrates on a state equalizing birth and death rate is
non-trivial. This is not a general feature and one can build simple birth-death processes under which this property
fails.
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system should be lower-bounded by what we obtain when pE = 1. We show that this bound is
actually tight. There is a simple intuition for why the behavior of the system is similar when pE < 1

as when pE = 1: as pH → 0, the number of patients (and thus donors) in the system explodes. If
there are k donors in the system, a new arriving easy-to-match patient is compatible to some donor
in the system with probability at least 1− (1− pE)k, which goes to 1 for sufficiently large k. Thus,
easy-to-match patients will get matched quickly as long as pE is a constant.19

Proposition 2.6 reveals several interesting comparative statics. First, the average waiting time of
hard-to-match patients is decreasing in λ. A larger λ means a higher arrival rate for hard-to-match
patients and a lower one for easy-to-match patients. In other words, easy-to-match patients exert a
negative externality on hard-to-match ones. Indeed, upon arrival, an easy-to-match patient is almost
sure to be compatible with an existing donor. The departure of a donor makes the market smaller,
reducing the opportunities for future hard-to-match patients and thus increasing their waiting time.
As we shall see below, this is in contrast to Pairwise and Chain under which easy-to-match patients
can potentially help hard-to-match patients by increasing their likelihood of being cross-compatible
or increase the likelihood of initiating a chain-segment (see Figure 2).

As we already mentioned in our Examples 2.4 and 2.5, matching patients with donors quickly, as
does the Unpaired algorithm, may not always be beneficial. Indeed, our examples showed that the
average waiting time of patients under Unpaired can be higher than under Pairwise or Chains for
some realizations of our Poisson process. Theorem 2.7 and Theorem 2.10 state that, when taking
expectations with respect to possible realizations of our process, this is not the case anymore.

Theorem 2.7 (Unpaired vs. Pairwise). If λ > 1
2 , then:

lim
pH→0

pH
W(Pairwise)

W(Unpaired)
=

ln(2λ)

ln(1 + λ)
,

and if λ < 1
2 , then:

lim
pH→0

W(Pairwise)

W(Unpaired)
=

1

pE

ln
(

1−λ
1−2λ

)
ln (1 + λ)

> 1.

Proof. See Appendix B.1.

This theorem states that, when pH gets small, the average waiting time under the Unpaired
algorithm is less than that under the Pairwise algorithm, irrespective of the value of λ. Moreover,
when there are more hard-to-match patients (λ > 1

2), the gap between the two algorithms goes to
infinity at rate 1

pH
. When there are strictly more easy-to-match patients (λ < 1

2), the gap is not
always as large, but still Unpaired achieves a shorter average waiting time than Pairwise.

19For a new arriving easy-to-match patient, the likelihood of being compatible to some donor in the system goes to
1 as pH vanishes. However, conditional on the small probability event that this patient does not get matched upon
arriving, given the priority rule under Unpaired, he will have to wait for an arriving donor to be incompatible with
all hard-to-match patients remaining in the system. Given that the number of hard-to-match patients in the system
explodes, one may expect the conditional waiting time to be very long. However, at an intuitive level, the rate of
arrival of such donors should be bounded above by n(1− pH)k

∗
which converges to a constant as pH vanishes. This

suggests that the conditional waiting time does not explode. We make this precise in our argument in Appendix C.
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To gain some intuition for the first part of the result, let us focus on the special case that there
are only hard-to-match patients (λ = 1). Consider a given patient who is waiting in a pool of size k.
New donors arrive with rate n and they are compatible to our patient with probability pH , which
means that the arrival rate of a compatible donor for this patient is npH . Since all agents are ex
ante symmetric, our patient, under the Unpaired algorithm, will get matched at rate proportional
to npH/k. Now consider the Pairwise algorithm. A patient will get matched if a cross-compatibility
happens, so our patients match rate is proportional to np2H/k. Thus, for any given pool size,
Unpaired matches agents 1/pH times faster than Pairwise, which in turn means that the waiting
time under Unpaired is 1/pH times smaller.20

Furthermore, the next theorem shows that the Unpaired algorithm’s performance is not too far
from the Optimal algorithm or, at least, much closer to it than Chain or Pairwise.

Theorem 2.8 (Unpaired vs. Optimal). For any λ, we have:

lim
pH→0

W(Unpaired)

W(Optimal)
≤ 2

ln (1 + λ)

λ
≤ 2.

We prove this theorem in Appendix B.2. The main idea behind the proof is to provide a lower
bound on the expected waiting time that applies to any possible matching algorithm, and hence,
to Optimal. The essence of the argument can be given in the one-type model. So let us set λ = 1,
normalize the arrival rate to n = 1 and fix an arbitrary matching algorithm ALG. Given a fixed
pool size k, an arriving patient can be matched right way (in which case, his waiting time is 0) or
he can join the pool. The latter event occurs with probability (1− pH)k. In this event, in order to
get matched, the patient will have to wait for an arriving compatible donor (this is necessary but,
of course, not sufficient) which occurs at rate pH . Thus, the conditional expected waiting time of
patients is bounded below by21

(1− pH)k
1

pH
≥ (1− kpH)

1

pH
.

Taking expectations over possible values of k, we get as a lower bound on the unconditional expected
waiting time of patients

W(ALG) ≥ 1

pH
− E[k]

where E[k] stands for the expected pool size. Now, the final step of the proof simply consists in
noting that, by Little’s law, the expected pool size divided by the arrival rate of patients equals the
expected waiting time, i.e., W(ALG) = E[k]. Thus, we obtain the following lower bound on the

20Ashlagi et al. (2019)—from whom we borrow the analytical expression of the waiting time of patients under the
Pairwise algorithm—were not able to derive a closed form solution when the arrival rate of H patients and E patients
are the same. This is why we do not report any result for λ = 1/2. However, they provide simulations suggesting
that, in that case, the expected waiting time of H patients scales with 1/pH .

21In the inequality, we use the Bernoulli inequality, which states that for any x ≤ 1 and any n ≥ 1, (1−x)n ≥ 1−xn.
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expected waiting time of the algorithm

W(ALG) ≥ 1

2pH
.

This lower-bound together with Proposition 2.6 gives us Theorem 2.8 when λ = 1. One can easily
extend this argument to the two-type model to obtain λ

2npH
as a lower bound and derive Theorem

2.8 in this general case.
This theorem shows that the waiting time of patients under the Unpaired algorithm is not too

far from that under the Optimal algorithm. This is not true for Pairwise as implied by Theorem 2.7,
especially when λ > 1

2 . Note that Unpaired is purely greedy and computationally simple, while the
Optimal algorithm is forward looking and potentially computationally complex. Yet, the Optimal
algorithm does not substantially improve upon Unpaired. This result can be further strengthened:
As made precise in the next remark, if the Optimal algorithm is restricted to provide easy-to-match
patients with an average waiting time as short as their waiting time under the Unpaired algorithm,
the waiting time under Unpaired is at most 38 percent more than under this restricted Optimal
algorithm. This is a natural restriction if the objective is to improve, at least weakly, the situation
of all patients (i.e., decrease the waiting time of hard-to-match patients without increasing the
waiting time of easy-to-match patients).

Remark 2.9. The bound in Theorem 2.8 can be improved under this additional constraint on the
waiting time of easy-to-match patients. Appendix B.2 shows that for any matching algorithm ALG
satisfying WE(ALG) ≤WE(Unpaired),

lim
pH→0

W(Unpaired)

W(Optimal)
≤ (1 + λ)

ln (1 + λ)

λ
≤ 2 ln(2) ' 1.38.

So far, we have shown that the Unpaired algorithm performs substantially better than Pairwise,
while being much closer to the Optimal algorithm. In practice, the Chain algorithm also plays an
important role in matching patient-donor pairs. Our next result compares Unpaired with Chain.

Theorem 2.10 (Unpaired vs. Chain). For any λ, if pE = 1, we have:

lim
pH→0

W(Chain)

W(Unpaired)
= − ln(1− λ)

ln(1 + λ)
≥ 1.

Proof. See Appendix B.3.

Since − ln(1−λ)
ln(1+λ) is greater than one, when pH gets small, the average waiting time under Unpaired

is smaller than under the Chain algorithm irrespective of the value of λ. Note also that − ln(1−λ)
ln(1+λ) is

an increasing function of λ and goes to infinity as λ → 1. In other words, the Unpaired algorithm
performs increasingly better than the Chain algorithm as the fraction of hard-to-match patients
increases; as this fraction approaches one, Chain delivers an average waiting time that is infinitely
longer than what Unpaired achieves.
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Below is an intuition of this theorem. The Chain algorithm performs better when the probability
of starting a new chain-segment is higher, which makes easy-to-match patients critical. When a
pair with an easy-to-match patient arrives, the patient will be matched with the bridge donor and
advance the chain-segment with probability pE . This probability reduces to pH , which is vanishing,
if the arriving patient is hard-to-match. Note that the donor in the newly arriving pair cannot
be considered for matching unless the paired patient finds a match. Therefore, when only a small
minority of arrivals have an easy-to-match patient, the probability of starting a new chain-segment
is small and Chain performs poorly. In contrast, the Unpaired algorithm does not crucially depend
on the type of the arriving patient, because it allows donation-before-receipt.22

Theorem 2.10 comes with an additional technical assumption: to provide a closed-form solution
for the Chain algorithm, we assume pE = 1. Without this assumption, the Markov chain induced
by the Chain algorithm seems too complicated to be analyzed. For the same reason, Ashlagi et al.
(2019) do not provide a formal proof for the performance of Chain when pE < 1. Our numerical
simulations, as well as those in Ashlagi et al. (2019), indicate that the closed-form solution for
pE = 1 approximates well the simulated average waiting time for pE < 1. Based on these results,
we conjecture that Theorem 2.10 holds even when pE < 1.

Remark 2.11. The Chain algorithm identifies a chain in a greedy fashion. It does not necessarily
pick the longest chain. The Optimal Chain algorithm (selecting the longest chain) has been studied
in a one-type model by Anderson et al. (2017). In that model, it is easy to show that the waiting
time of patients under Optimal Chain is always greater than that of Unpaired. Indeed, under Optimal
Chain, an arriving patient has probability pH to be matched with the bridge donor right away. With
the complement probability, this patient will be unmatched and enter the pool. In that event, she
will have to wait for an arriving patient to be compatible with the bridge donor (which is necessary
to initiate a chain-segment), which occurs with rate pH . Thus, in expectation, for small values of
pH , this patient will have a waiting time bounded below by 1/pH . This is larger than ln(2)/pH , the
waiting time of patients under the Unpaired algorithm (see Proposition 2.6).

We summarize our theoretical results in Figure 2 with pE = 1 and n = 1. For a given algorithm,
taking pH to zero, a line in the figure depicts the limiting average (normalized) waiting time for
hard-to-match patients (panel A) and that for all patients (panel B), as a function of the fraction of
hard-to-match patients (λ ∈ [0, 1]). In terms of these waiting times, the difference between Unpaired
and Optimal is bounded and relatively small for all λ (Theorem 2.8); the difference between Unpaired

22If there are finitely many bridge donors at each point in time, the same argument applies. Indeed, as pH vanishes,
the likelihood that an arriving hard-to-match patient is compatible with a bridge donor vanishes. Therefore, when
only a small minority of arrivals are easy-to-match patient, Chain still performs poorly and Theorem 2.10 still holds,
as mentioned in footnote 13. In addition, note that nothing changes for an arriving easy-to-match patient since, by
assumption pE = 1, and so more bridge donors is not helpful to start a chain segment in case of such an arrival. Thus,
more generally, the comparison between Unpaired and Chains remains the same when the number of bridge donors is
larger than 1. Of course, with pE < 1, more bridge donors may be useful to allow easy-to-match patients to start new
chain segments. However, at an intuitive level, we are considering the most favorable case for Chains when assuming
that pE = 1 where each arrival of an easy-to-match patient starts a chain segment. Further, simulations in Ashlagi
et al. (2019) as well as ours show that the average waiting time under the Chain algorithm when pE = 1 is similar to
the average waiting time for pE < 1.
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(A) Average waiting time of all patients (B) Average waiting time of hard-to-match patients
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Figure 2: Waiting Time under Each Algorithm and the Fraction of Hard-to-match Patients (λ)

Notes: Given pE = 1 and n = 1, the lines show that, as a function of the fraction of hard-to-match patients (λ), the waiting

times under the Pairwise, Chain, and Unpaired algorithms, as well as a lower bound for the Optimal algorithm.

and Pairwise increases with λ and explodes when λ > 1
2 (Theorem 2.7); last, the difference between

Unpaired and Chain increases with λ and goes to infinite when λ = 1 (Theorem 2.10). The results
reported in Figure 2 allows us to quantify the benefits of relaxing the simultaneity constraints
embedded in the Pairwise algorithm. They show that those benefits may be substantial, especially
when the share of hard-to-match patients is large. We will evaluate the empirical relevance of these
results in Section 3.

2.3 Discussion of the Assumptions

We now discuss some of the assumptions and modeling choices that we have adopted.
First, our model assumes two patient types, each of which has a different probability of being

compatible with a random donor. Below, we show some evidence that this can be a reasonable
approximation in some settings. A real-life kidney exchange problem certainly has more than two
types of patients, because a patient’s biological compatibility with a donor depends on blood type
and tissue type compatibilities. There are finitely many blood types with a known compatibility
relation, but tissue compatibilities involve a more subtle comparison of the antibodies of a patient
with the antigens in a donor’s tissue. This information is usually summarized by a continuous
measure, Panel Reactive Antibodies (PRA), quantifying the probability that a patient is tissue type
incompatible with a random blood type compatible donor. The higher a patient’s PRA, the more
difficult it is to find a compatible donor for the patient. The distribution of PRA among patients
is bimodal with high concentrations of patients at very low and very high PRA values in the U.S.
(Anderson et al., 2017). Panel A of Figure 3 shows a similar bimodal pattern for the patients in
the French kidney exchange program (KEP) that are used in our simulation analyses in Section 3.
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Adding blood type compatibility still induces a bimodal distribution for the probability of overall
biological compatibility in our data (panel B).

(A) PRA (Panel Reactive Antibodies) Values (B) Fraction of Compatible Donors

Figure 3: Distribution of Patient Types in the French KEP

Notes: Calculated by the authors from the 78 patient-donor pairs who ever participated in the French kidney exchange program

(KEP) during December 2013 to February 2018. In panel A, the higher a PRA, the more difficult it is for a patient to find a

compatible donor. In panel B, a patient is compatible with a donor if they are both blood type and tissue type compatible.

Using the DIP test in Hartigan and Hartigan (1985), for both distributions, we fail to reject the hypothesis of bimodality. See

Table 1 for more summary statistics on these patients.

Second, there is no death in our model, which can be overly simplifying for patients waiting
for kidney transplant.23 However, patients participating in a KEP are usually in better health
conditions. In the sample period of more than four years, none of the patients who participated in
the French KEP died while waiting for a kidney. Some of them did leave the KEP for a deceased donor
kidney or an incompatible living donor kidney after going through desensitization (see Section 3.1).
Introducing a pair exit decision would add a layer of complexity in our model, but we conjecture that
our main results would hold. Intuitively, the longer the waiting time under an algorithm, the higher
the probability that a patient exits. Compared with Pairwise and Chain, the Unpaired algorithm
has a shorter average waiting time, and thus a model with exit may reinforce the advantage of the
Unpaired algorithm. Moreover, our simulations in Section J show that our results are robust even
when we allow pairs to exit.

Last, our main theoretical results are limiting results for pH → 0, with pH being the probability
of a hard-to-match patient being compatible with a random donor. Working with limit results gives
us more analytical tractability, but it also implies that our results provide a good approximation
only when pH is sufficiently low. In our data, a patient with a PRA above 85 percent, who is
considered hard-to-match by convention, is compatible with only 1.5 percent of the living donors.
In contrast, a patient with a PRA below 85 percent is compatible with 24.5 percent of the living
donors. Admittedly, our theoretical results do not give any insight about how small pH should be for
the results to be a good approximation.Ultimately, this is an empirical question and our empirical
analysis in Section 3 confirms the relevance of our results in real life.

23In the U.S., in 2014, 4,761 patients died while waiting for a kidney transplant; another 3,668 patients became too
sick to receive a kidney transplant. Source: National Kidney Donation (www.kidney.org).
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3 Simulation Analyses Using French Data

Our theoretical model investigates the steady-state performance of the algorithms in a stylized
model. There are two main reasons for why an empirical investigation is crucial. First, even if all
features of the environment (e.g., arrival rate) remain steady over time, it will take some time for
a given market to reach the steady state. Policymakers are certainly interested in an algorithm’s
short-run performance as well, and our theoretical results are silent with respect to that. Second,
while the two-type assumption of our model is not unreasonable as a first-order approximation, the
real world is indeed substantially more complex. For instance, a patient’s biological compatibility
with a donor depends on both blood type and tissue type compatibilities and thus, for a given
patient, the compatibility realizations are not i.i.d. across donors.

With these considerations, we assess the algorithms with an administrative dataset on kidney
transplants in France for a period of 1644 days. We observe all 586 incompatible pairs that either
have completed or are still waiting to complete the transplantation in France in that period. These
pairs then serve as the “population pool” from which we randomly draw pairs to participate in the
algorithm in consideration.

We proceed as follows. Section 3.1 describes the institutional background and our data. In
Section 3.2, we detail some definitions and assumptions that are necessary in our simulations. Sec-
tion 3.3 presents the performance of the four algorithms (Pairwise, Chain, Optimal, and Unpaired)
in our baseline simulation. We highlight that the empirical results are consistent with the theoretical
predictions. Moreover, focusing on the waiting times of patients/donors after being unpaired, we
acknowledge that the two potential incentive issues of Unpaired appear to be a concern in practice.
However, in Section 3.4, we show that one of the issues does not affect the performance of Unpaired,
while the other one becomes negligible as the market size grows. Moreover, we shall show in Sec-
tion 4 that this latter issue can also be made negligible in small markets such as the French KEP
when we integrate the possibility of getting deceased donor kidneys under Unpaired.

3.1 Institutional Background and Data

Our analysis relies on administrative data from France provided by the Agency of Biomedicine
(Agence de la Biomédecine, ABM), a government agency that oversees all organ transplants in
France. Our data covers the period of December 13, 2013 to February 23, 2018, or 1644 days in
total, including all transplants with deceased or living donor kidneys, as well as discarded kidneys
from deceased donors.

In France, when a patient is diagnosed as requiring a kidney transplant, her doctor must register
her at the national deceased donor list (DDL) to join the waitlist. If a patient finds an incompatible
living donor, she may either join the kidney exchange or go through a desensitization procedure
whereby she can receive an incompatible kidney from her donor. Together, they become the pool of
incompatible pairs from which we will randomly draw pairs to create different markets. Below, we
provide institutional details.
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Kidney Exchange Program. France’s kidney exchange program (KEP) started in 2013, follow-
ing the revision of the bioethics law (loi de bioéthique) that regulates the medical practices in France.
Unlike the U.S., France has a single KEP at the national level, administered by the ABM. By law,
any exchange of living donors must be done through the KEP.

The KEP executes a match run every three months. Over the time period we study, only 2-way
pairwise exchanges were allowed, while non-directed kidney donations and chains were prohibited.24

The KEP’s objective is to maximize the total number of transplants in each match run. In total,
there are 78 pairs participating in the 15 match runs in our sample period.25 A detailed summary
can be found in Combe et al. (2019).

Table 1: Kidney Patients and Donors: Summary Statistics

Incompatible Pairs
KEP Pairs Desensitization Pairs DDL KidneysePatient Donor Patient Donor

(1) (2) (3) (4) (5)

# of observations 78 78 508 508 13,036
Patient grafted/Donor donated 69%b 35% 100% 100% 97%

Agea 46.1 48.1 42.7 45.8 54.9
(12.9) (10.5) (14.1) (11.8) (18.5)

Female 47%c 49%d 37% 62% 43%
Blood type

A 31% 51% 23% 49% 44%
B 10% 18% 16% 16% 10%
O 56% 23% 59% 29% 43%

AB 3% 8% 2% 6% 4%
Sensitization Statusf

Hypersensitized 27% 24%
Sensitized 50% 47%

Non-sensitized 23% 29%
ABO Compatible within the pair 42% 44%
HLA Compatible within the pair 32% 48%

Notes: This table presents characteristics of kidney patients and donors in France from December 2013 to February 2018.
Columns (1) and (2) are on the 78 patient-donor pairs who ever participated in the KEP. Columns (3) and (4) are on pairs who
did desensitization. Column (5) describes all the DDL kidneys in the sample period, column (6) focuses on those qualified for
at least one KEP patient, and column (7) includes those qualified for at least one one patient in KEP or desensitization pairs.
The definition of being a “qualified” DDL kidney is in footnote 32.
a An age in the table is calculated on January 1, 2012, except for a DDL kidney (which is calculated on its retrieval day).
b Patients in the KEP can receive a transplant outside the KEP (e.g., from DDL or desensitization), and a donor can donate
outside the KEP (i.e., by desensitization). There are 12 pairs (15.4%) engaged in an exchange in the KEP in the sample.
c This percentage is calculated among the 70 patients with non-missing gender information.
d This percentage is calculated among the 68 donors in the KEP with non-missing gender information.
e A DDL donor may provide two kidneys, and the statistics in column (5) are calculated at the individual kidney level.
f A patient’s sensitization status measures how likely it is for her to find a deceased or living donor kidney that is compatible.
The exact definition is provided in Appendix H.1.

Columns (1) and (2) of Table 1 present more statistics on the 78 KEP pairs. Some patients
receive a kidney from the DDL or a living donor kidney outside the KEP, leading to 69 percent of
them receiving a transplant. 35 percent of the donors donate, with some of them donating outside

24See Section 5 for a discussion of the recent reform of the rules governing the french KEP.
25In the sample period, December 2013 to February 2018, the first match run happened in December 2013. There

were only three match runs in each of the years 2014, 2015 and 2017 and four match-runs in 2016. Additionally, our
data covers one match run in February 2018. On average, a pair stays for 3.4 match runs, and a match run has 17.5
participating pairs.
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the KEP. Many of the patients have blood type O (56 percent) or are hypersensitized (27 percent),
indicating that a large fraction of them are hard to match. The most common blood type among the
donors is A (51 percent), while only 23 percent of them have type O blood. Among all the pairs, 42
percent are blood type compatible, and 32 percent are human leukocyte antigen (HLA) compatible.

Desensitization Pairs. Desensitization is an immunosuppressive treatment that can eliminate
immunological compatibility constraints. Once treated, a patient is able to receive a transplant
from an incompatible donor. For a brief review of desensitization, please see Andersson and Kratz
(2020) and Heo et al. (2018) as well as the references therein.

In general, incompatible transplants facilitated by desensitization are more expensive than com-
patible ones,26 while leading to poorer patient outcomes.27 Nonetheless, desensitization is a popular
choice for incompatible pairs in France. During our sample period, there are 508 incompatible pairs
that take this option without trying the KEP. These transplants, as well as the associated patients
and donors, are recorded by the ABM.

Columns (3) and (4) of Table 1 present summary statistics on desensitization pairs. Compared
with the donors, the patients are less likely to be a female (37 percent vs. 62 percent), are of similar
ages (45.9 vs. 45.8 years old), and are more likely to have type O blood (59 percent vs. 29 percent).
24 percent of these patients are hypersensitized. Relative to the KEP pairs, the desensitization pairs
are more likely to be blood type compatible (44 percent vs. 42 percent) or HLA compatible (48
percent vs. 32 percent).

Deceased Donor Kidneys. Some of later evaluations will involve deceased donor kidneys list,
which we refer to as DDL kidneys. Our sample has 13, 036 such kidneys offered to patients on the
DDL.28 Column (5) of Table 1 describes all the DDL kidneys in our sample period. On average,
they are 54.9 years old, and 43 percent are from a female donor. The top two blood types are A (44
percent) and O (43 percent).

3.2 Definitions and Assumptions in the Simulations

The following definitions, assumptions, and data preparations are needed in our simulations.
26Compared with a compatible living donor transplant, on average, a blood-type incompatible transplant is $100,000

more expensive, and an HLA incompatible transplant is $180,000 more expensive (Axelrod et al., 2018).
27In a recent survey, Scurt et al. (2019) conclude that blood-type incompatible transplants result in an excess

of mortality and loss of kidney grafts compared to compatible transplants. The outcomes of HLA incompatible
transplants are even worse (Marfo et al., 2011).

28On any given day in our sample period, there are about 7, 000 patients waiting on the (active) DDL. In our sample
period, there are 389 deceased donors whose kidneys are offered to the DDL patients but discarded in the end due to
either refusals or last-minute cancellations. For some of the deceased donors, we do not know how many kidneys are
available for the DDL; in that case, we assume such a donor has only one kidney available.
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Simulating markets. There are 586 KEP and desensitization pairs form our pool of pairs.29 We
measure time period by days vary the size of the market via daily Poisson arrival rate of pairs n.
For a given size n, we first draw from the Poisson distribution the number of arriving pairs on each
day and then randomly draw that number of pairs from the pool with replacement.30 We run each
simulated market under a given algorithm for 1644 days, corresponding to the number of days in
our sample period. To evaluate an algorithm in a market of size n, we run 1000 sets of independent
simulations and report the average across them.

We consider eight different sizes, n ∈ {0.05, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}.31 In the following, we focus
on n = 0.05 which corresponds to the French KEP. Many larger real-life KEPs are included in our
simulations. For example, the Spanish KEP is roughly n = 0.2; the UK KEP is n = 0.4; and the
NKR, the largest in the world, is roughly n = 1 (Agarwal et al., 2018; Biró et al., 2019).

Compatibility between a patient and a donor. Patient pi and donor dj are compatible unless
they are either blood type incompatible or HLA incompatible. We have sufficient information to
determine the compatibility between any patient and any donor in the data. Specifically, we compare
pi and dj ’s blood types to determine their blood type compatibility; if dj has at least one antigen
that is unacceptable to pi, pi is HLA incompatible with dj .

Hard-to-match. A patient is defined to be hard-to-match if she is hypersensitized, i.e., tissue-type
incompatible with more than 85 percent of the 13,622 donors, living or deceased, in our data. There
are 21 such patients from the KEP pairs and another 120 from the desensitization pairs (Table 1).
As mentioned in Section 2.3, even when we abstract from blood type incompatibility, the probability
of those patients finding a compatible kidney is low. Additionally, we separately report statistics on
O patients, who are also likely to be hard to match.

“Waiting rooms” for unpaired patients (P) and donors (D). The Unpaired algorithm may
have two incentive issues involving unpaired patients and donors due to donation-before-receipt and
receipt-before-donation. Namely, a patient may not be willing to let her donor donate before she
receives a kidney and a donor may renege if her patient has already received a transplant from

29Hence, our simulation only includes incompatible pairs. As shown in Table 1, the distribution of characteristics
of the KEP pairs are different from those of the desensitization pairs, due to self-selection of the pairs into the KEP
or desensitization. As a robustness check, we run several additional simulations: resampling only from the KEP pairs
and resampling from a simulated U.S. pool (NKR and APKD) based on marginal distributions reported in Ashlagi
and Roth (2020). In all these simulations, we find similar patterns in the performance of the algorithms. Relatedly,
some countries allow compatible pairs to participate in a KEP, and policymakers can even incentivize compatible
pairs to participate and improve a KEP’s performance (Sönmez et al., 2018). The participation of compatible pairs
will not only increase the market size but also change its composition because compatible pairs are, on average, easier
to match than incompatible ones. As another robustness check, we add compatible pairs into the simulation. Again,
we find similar patterns in the algorithms’ performance.

30As in the literature, we assume that the participation decision of a pair is exogenous and not affected by the
performance of the algorithm in use. An efficient algorithm tends to encourage more pairs to participate, while every
algorithm performs better in a larger market (as we shall see later). Hence, our assumption may underestimate the
actual performance of a more efficient algorithm, in our case, Unpaired.

31We also run simulations for n ∈ {2.5, 3, 3.5, 4}, whose results, although not reported, also confirm our findings.
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someone else. Some definitions will be useful in our analysis: we let P be the “waiting room” for
unpaired patients who are waiting for a kidney after their paired donors have donated; D is the
“waiting room” for unpaired donors who wait to donate after their paired patients have received a
transplant.

Tie-breaking in the algorithms. When selecting among multiple compatible donors/patients,
an algorithm needs a tie-breaking rule. In our definitions (Definitions 2.1, 2.2, and 2.3), we allow
for arbitrary tie-breaking rules within types (i.e., we favor hard-to-match patients but allow for
arbitrary tie-breaking rules within patients of the same type; similarly, we allow for arbitrary tie-
breaking rules among donors), as the theoretical results do not depend on that. Our simulation,
however, complements the definitions with the following rule: when selecting among multiple donors,
Unpaired favors those in D and breaks any remaining ties by their waiting time; when it chooses
among multiple patients, hard-to-match patients enjoy the highest priority, and any remaining ties
are broken first by whether a patient is in P and then by their waiting time. Pairwise and Chain
also use this tie-breaking rule, although Pairwise involves neither P nor D and Chain has no P.

3.3 Evaluating the Algorithms: Baseline Simulations

We focus on a market with a daily arrival rate of n = 0.05, similar to the French KEP. We consider
a baseline in which there is neither pair exiting nor donor reneging. Presumably, the exit rate of
pairs is endogenous and would be rarer in the high-performing algorithm such as Unpaired. We start
with no exit and allow an exogenous exit rate in a robustness check in Section J. Donor reneging in
practice is shown to be low (Cowan et al., 2017), although we shall relax this no reneging assumption
shortly.

We apply an algorithm to each of the 1000 simulated markets. For a given simulation, pairs are
ordered by arrival date: i = 1, . . . , n`. Let a(i) and e(i) be the dates of arrival and exit of pair i,
respectively. Let T be the end of our simulation time horizon; obviously, T ≥ a(n`). There is no
exit, or equivalently e(i) = T for all i. That is, before the last day (T ), once a pair arrives, the
patient leaves only if she receives a kidney, and the donor leaves only if she donates a kidney.

We simulate Pairwise and Unpaired by following their definitions and applying the aforemen-
tioned tie-breaking rule (Section 3.2). To initiate Chain in the simulation, we select a DDL kidney
as an altruistic donor.32 We allow for multiple bridge donors in Section J. Note that, following
common practices, pairwise exchanges are still allowed in Chain in the simulation, contrary to our
theoretical analysis.33

32To ensure that a DDL kidney is “high quality” for a given patient, we require that the DDL kidney be compatible
with the patient and have a Kidney Donor Profile Index (KDPI, lower is better), a risk index of post-transplant graft
failure, below the Living Kidney Donor Profile Index (LKDPI) of the patient’s paired incompatible donor. The LKDPI
is an index for living donor kidneys corresponding to the KDPI, and they are of the same scale. See Appendix H for
more details on KDPI and LKDPI. Among the DDL kidneys meeting this selection criterion for at least one KEP
patient, we randomly pick one, regardless of its arrival date. We assume that this DDL kidney arrives on the first
simulated arrival day, a(1), and remains until being transplanted or until the end of the simulation. We redraw a new
DDL kidney for each set of simulated dates.

33Based on simulations of the theoretical model, the steady-state average waiting time of this algorithm (allowing
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A best-case, infeasible algorithm: Omniscient. In Section 2, we used the optimal algorithm
to provide the best-case scenario for average waiting time. However, this algorithm is not computa-
tionally feasible due to, among other reasons, the exponential size of the state space. As such, instead
of simulating the optimal algorithm, we consider a better-than-optimal algorithm, the Omniscient
algorithm. This algorithm assumes that the designer has full information about all the patients
and donors arriving in our simulation, including their arrival/exit dates and their characteristics.
The designer then minimizes the average waiting time of all patients up to date T (i.e., the end
of our simulation). 34Therefore, in terms of this average waiting time, it dominates all algorithms,
including Unpaired. While Omniscient is practically infeasible, it helps us evaluate the potential of
Unpaired.

Simulating Omniscient is feasible because it does not need assumptions on pair arrivals beyond
our simulation time horizon. We detail the definition and implementation of the Omniscient al-
gorithm in Appendix G, which for the baseline simulations corresponds to a standard polynomial
algorithm to compute a minimum weight bipartite matching.

Results. Our simulation results in columns (1)-(5) of Table 2 are in line with our theoretical find-
ings in Section 2.2. The transplant rate under Unpaired, very similar to what Omniscient achieves,
is significantly higher than those under Pairwise and Chain; the waiting time under Unpaired is sub-
stantially lower than Pairwise and Chain (cf. Theorem 2.7 and Theorem 2.10). Although Omniscient
achieves the lowest waiting time, it does not significantly outperform Unpaired (cf. Theorem 2.8).
We also run the same simulations for various market sizes and find the similar patterns; see Appendix
Figure I.1.

We first report transplant rates: Unpaired is close to Omniscient (63 vs. 64 percent) and far
above the other two algorithms (33 percent under Pairwise and 36 percent under Chain). The same
conclusion is true among hard-to-match patients.35

Conditional on transplantation, the average waiting time is 176 days under Unpaired, which is
close to the 144 days under Omniscient and far lower than the 248 days under Pairwise and the 232
days under Chain. However, among hypersensitized patients, this conditional waiting time is lower
under either Pairwise or Chain than Unpaired. The main reason is that Pairwise and Chain each
only achieves less than a half of the transplants under Unpaired.

This observation motivates us to consider an alternative waiting time measure: the average
censored waiting time for all patients, which also includes the waiting time of those who are not
transplanted at the end of the simulation period. As pairs arriving throughout the simulation period
are randomly drawn from the same pool, this new measure creates some balance between transplant

for both chains and pairwise cycles) is almost identical to that of Chain. The simulations are available upon request.
34The optimal algorithm used in the theory section simply minimizes waiting time over all possible algorithms

(with a unique invariant distribution). Importantly, an algorithm is a mapping from current compatibility graph into
matchings. Hence, it does not condition current decisions to future compatibility graphs. Put differently, under this
optimal algorithm, the designer does not know for sure the future. The omniscient assumes that all the future is
known to the designer.

35The transplant rate of either hypersensitized or O patients under any algorithm is significantly lower than that
of other patients. This is consistent with our assumption that they are harder to match than others.
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Table 2: Performance of Different Algorithms

Pairwise 2-way & Chain & With DDL
(2-way) 3-way Pairwise Unpaired Omniscient & δ = 6 months
Exchange Exchanges Exchange Exchange Pairwise Unpaired

(1) (2) (3) (4) (5) (6) (7)

Transplants
% patients receiving transplant 33% 40% 36% 63% 64% 85% 93%

hypersensitized patients 18% 23% 18% 40% 41% 74% 82%
O patients 24% 30% 26% 46% 49% 84% 91%

% transplants from living donors 100% 100% 100% 100% 100% 24% 55%

Average waiting time (days)
Patients receiving transplant 248 240 232 176 144 169 72

hypersensitized patients 234 292 232 281 231 239 145
O patients 362 307 357 311 228 182 83

All patients (censored) 617 565 579 350 325 193 91
hypersensitized patients 737 704 736 574 559 297 203

O patients 688 643 671 486 445 208 106

Patients going through P
Total number - - - 29 32 - 29

hypersensitized patients - - - 11 12 - 13
O patients - - - 24 25 - 21

Waiting time of patients in P
Median - - - 245 384 - 6

hypersensitized patients - - - 517 584 - 54
O patients - - - 237 396 - 6

Donors going through D
Total number - - 4 26 31 - 36

AB donors - - 1 4 5 - 4

Waiting time of donors in D
Median - - 207 339 417 - 39

AB donors - - 368 618 614 - 48

Notes: The statistics are from the 1000 sets of simulations, each of which contains independent draws of pairs with a daily
arrival rate of 0.05 (roughly the size of France’s KEP). There are on average 83 incompatible pairs, among which 20 pairs have
a hypersensitized patient and 48 have an O patient. The waiting time for a patient or a donor may be censored from above if
she has not received or donated a kidney by the last date of the simulation. The same censoring applies to the number of days
in P or D. P and D are waiting rooms for unpaired patients and donors, respectively. Pairwise (2-way exchange) (column 1)
is defined in Definition 2.1, column (2) allows 3-way exchanges in addition to 2-way, Chain is defined in Definition 2.2 and
is combined with Pairwise (column 3). In column (4), Unpaired is defined in Definition 2.3. Omniscient (column 5) uses full
information on all pairs in the sample period to match patients and donors to minimize the total censored waiting time. Patients
in columns (6) and (7) have to wait for six months before receiving a DDL kidney offer (unless their donor has already donated
under Unpaired).

rate and waiting time conditional on transplantation. Omniscient (column 5) minimizes average
censored waiting time and reaches 325 days, while Unpaired (column 4) achieves a similar level, 350
days. Pairwise and Chain (columns 1 and 3) perform significantly worse, delivering a waiting time
at least 65 percent longer than Unpaired. This pattern also holds among hard-to-match patients
(defined as either hypersensitized or O patients).

In practice, a KEP may allow both 2-way and 3-way pairwise exchanges. Including this possibil-
ity, column (2) shows that this more flexible algorithm performs better than Pairwise but remains
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significantly worse than Unpaired.36

In sum, our theoretical analysis shows that imposing simultaneity constraints in a kidney ex-
change algorithm can be costly, while our simulation reveals that such costs are indeed substantial
in realistic settings.

3.4 Two Potential Practical Challenges

Table 2 confirms that Unpaired has two potential practical challenges. First, that receipt-before-
donation makes some donors enter D and possibly wait for a long time. The median waiting time of
such donors is 339 days. Such a long wait can bring a non-negligible chance of losing an unpaired
donor, because she may refuse or become unfit to donate. The second challenge arises because
we allow donation-before-receipt, which means that some patients enter P after their donors have
donated; the median waiting time of the patients who go through P is 245 days. Hypersensitized
patients wait even longer: they have a median wait time of 517 days. Pairs may refuse to donate
before receiving a kidney if they expect such long wait-times.

To analyze the first challenge, we simulate Unpaired, but allow for each donor who enters D to
renege at some rate. Gentry et al. (2009) use a monthly renege rate of 5%, which is substantially
higher than what is documented by Cowan et al. (2017) in a dataset from NKR in the US.37
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Figure 4: Waiting Time and Transplant Rate under Unpaired When Donors May Renege

Notes: The size of the market in terms of daily arrival rate is n = 0.05, corresponding to the French KEP. For each donor who

enters D, there is an independent daily reneging probability, from which we can calculate a monthly reneging probability. We

consider a wide range of monthly rates, 5 percent and another 10 values from 10 to 99.90 percent. When the monthly reneging

rate is zero, the results are the same as column (4) of Table 2.

Figure 4 shows that the possibility of reneging barely changes the performance of the Unpaired:
If no donor reneges, then patients’ mean waiting time and transplant rate are 349 days and 62.5

36The Unpaired algorithm eliminates the timing constraints on the donation and receipt but, compared to the 2-way
and 3-way pairwise exchanges, it also allows exchange cycles of arbitrary sizes. One may naturally wonder whether
the performances of Unpaired relies on the relaxation of the constraints on the cycle sizes. To answer this question,
we simulated pairwise exchanges allowing cycles of arbitrary size. Its performance is still significantly worse than
Unpaired: the transplant rate is 44 percent (vs. 63 percent under Unpaired) and the (censored) average waiting time
is 539 days (vs. 350 days under Unpaired).

37In their dataset, among the 1244 bridge donors in a chain over about 7.5 years, 1.6 percent of the donors did not
donate for some reasons, e.g., donor health problems; only 0.5 percent of them elected not to proceed with donation.
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percent, respectively. In the worst case scenario, if (almost) all donors who enter D renege in a
month, then these numbers change to 371.5 days and 60.4 percent.38

The effect of reneging is negligible for a variety of reasons. First and foremost, most donors do
not enter D queue to begin with. Table 2 shows that, when there is no reneging, only 31 percent of
donors ever enter D. Second, when a donor in D reneges, it reduces the chance that another donor
enters D, thus reducing the risk of additional reneges in the future. This endogenous effect mitigates
the risk of reneging for Unpaired. Indeed, the results show that while the number of donations
from donors in D decreases, the one from donors who are still paired with their associated patient
increases. Finally, donors who eventually renege tend to be less valuable than the average donor, as
they are precisely the donors who tend to wait longer in the D queue.

We now discuss the second practical challenge: How does the possibility of patients waiting for
a long time in the P queue affects the performance of Unpaired? Would they still opt to donate a
kidney before receiving one?39 We first note that donating before receiving still increases the chance
of receiving a kidney relative to waiting for a cross-compatible match. Thus, the question is whether
the increased chance is enough to compensate for the risk of donating a kidney and never receiving a
kidney back. Data from the Advanced Donation Program implemented by NKR (see Flechner et al.
(2015) and Section 5) suggest that many individuals are willing to donate a kidney with a promise
of receiving a kidney years after.

In addition, the long wait-time of patients in P is largely due to the small size of the French
KEP. Once we do simulations on larger market sizes, we observe that the waiting time in P shrinks
substantially, as depicted in Figure 5. It shows that the median waiting time of patients in the P
queue substantially decreases as the market size gets bigger. When n = 0.2 (size of the Spanish
KEP), the median waiting time of unpaired patients drops to 115 days. When the market is n = 0.4

(the UK KEP size), it is as low as 76 days. If we have a market of the size of the NKR, the median
waiting of unpaired patients is 39 days.

4 Integrating Deceased Donors into the KEP

While the results in the previous section make us cautiously optimistic that patient-donor pairs
will opt into donate-before-receipt in a relatively large KEP, policymakers in countries with a small
KEP, such as France, may still have legitimate concerns with the two incentive issues. We now
propose a new algorithm that, by integrating deceased donors into the unpaired exchange program,
substantially reduces the waiting time of the unpaired patients (as well as the unpaired donors).
In Section 4.1, we introduce and extend the theoretical results of Section 2.2 to this new setting.
Then, in Section 4.2, we empirically analyze this idea and we make a final proposal for a practical

38These results are for n = 0.05 arrival rate, a size similar to the French KEP, and we obtain the same negligible
effect of donor reneging for a larger market with n = 0.2, corresponding to the size of the Spanish KEP.

39In Table J.3 in Appendix J, we report the results of simulations assuming that some types of patients opt-out from
donation-before-receipt. We simulate Unpaired and our practical proposal defined in Section 4.2 under two scenarios:
(i) all hypersensitized patients opt-out and (ii) only patients with a PRA above 0.98 opt-out. In these simulations,
we still confirm that Unpaired systematically outperforms the other algorithms and is close to Omniscient.
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Figure 5: Median Waiting Time of Unpaired Patients in P for Various Market Sizes

Notes: This figure shows the performance of Unpaired in markets of eight different sizes, n ∈ {0.05, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}.
The vertical lines indicate the size of some real-life KEPs.

implementation of the unpaired algorithm.

4.1 Integrating Deceased Donors: Theory

We now introduce the extended model. Deceased donors arrive in the market at rate µ. A patient
is compatible with a deceased or a living donor with the same independent probability (pH for an
H patient and pE for an E patient). Moreover, we assume that patients are indifferent between
receiving a graft from a compatible living or a compatible deceased donor.40

To integrate Unpaired and Pairwise with DDL, we will allow DDL kidneys to be offered to pa-
tients in the KEP, while living donations still follow the same rules as the standard Unpaired/Pairwise
algorithm. We assume that when a DDL kidney is matched with a patient in the KEP, one living
donor waiting in the KEP donates her kidney to a patient on the DDL By doing this, we ensure
that our proposed algorithm will not hurt patients waiting on the DDL. In such a case, we simply
say that the donor is removed from the KEP.41

Definition 4.1 (Unpaired with DDL). If any new patient-donor pair vi = (pi, di) enters the market
at time t, match pi to a compatible donor (if any), breaking ties arbitrarily, and match di to a
compatible patient (if any), breaking ties in favor of hard-to-match patients. If any deceased donor
ddi arrives at t, match ddi to a compatible patient (if any), breaking ties in favor of hard-to-match
patients. When ddi is matched with a patient, one living donor is selected at random and removed
from the market. If ddi is incompatible with all the patients in the market, remove ddi.

In the above definition, we assume that an incoming DDL kidney that is incompatible with all
current patients in the KEP will not be offered to the KEP. This is reasonable since each DDL

40In our empirical analysis, we will consider only kidneys from deceased donors that are comparable to living donors
in terms of quality. Hence, in the theoretical analysis, we implicitly assume that only kidneys from deceased donors
of “high quality” will be offered to patients in the KEP. Thus, we should think of µ as the rate of arrival of “high
quality” DDL kidneys.

41For the theoretical analysis, the identity of the donor removed from the market does not matter.
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kidney in reality is only available for a very short period of time.42 Note that we are implicitly
assuming that we can immediately find a patient on the DDL compatible with our living donor.
This is a weak assumption since in virtually all countries, the size of the KEP is marginal relative
to the number of patients waiting for a deceased donors.43

The following result generalizes Proposition 2.6 by characterizing average waiting times of pa-
tients under Unpaired with DDL.

Proposition 4.2. Under the Unpaired with DDL algorithm, for the average waiting time of hard-
to-match patients and that of easy-to-match patients, we have:

lim
pH→0

pHWH(Unpaired DDL) =
ln (n(1 + λ) + µ)− ln (n+ µ)

λ · n

and limpH→0 pHWE(Unpaired DDL) = 0. Hence,

lim
pH→0

pHW(Unpaired DDL) =
ln (n(1 + λ) + µ)− ln (n+ µ)

n
.

We prove this result in the Appendix C.
Differentiating with respect to µ clarifies that the waiting time of (hard-to-match patients) is

decreasing in the arrival rate of deceased donors. The new inflow from deceased donors gives more
opportunities to match patients quickly.44

Integrating deceased donors into Pairwise and Optimum. Of course, the inflow of deceased
donors can help any algorithm. It is, therefore, unclear whether our previous results comparing
unpaired, pairwise, and optimum will continue to hold: Is unpaired with DDL still substantially
better than pairwise with DDL and close to the optimal algorithm with DDL? To answer this
question, we first define a natural version of pairwise with DDL algorithm.

As under unpaired (not to exert any negative externalities on patients waiting for DDL kidneys),
we assume that whenever a DDL kidney is assigned to a patient in the KEP, one living donor is

42In practice, deceased donor kidneys are proposed, by order of priority, to compatible patients who are waiting
on the DDL. Deceased-donor kidneys are exposed to the so-called cold ischemia time (from flush to out-of-ice) and
it is well-documented that each additional hour of cold ischemia time significantly increases the risk of graft failure
and mortality following renal transplantation. Hence, in practice, kidneys from deceased donors are being offered to
patients for a short period of time.

43In January 2013, there were 4,500 patients waiting for a deceased donor in the New York Organ Donor Network
(NYRT) (Agarwal et al., 2021). Over the period 2012-2020, the average length of the (active) DDL was around 5,500
patients in the UK and 8,150 patients in France. Since a compatible living donor is, on average, of better quality
than many compatible deceased donor (Massie et al., 2016) it is reasonable to think that a living donor proposed to
the DDL will find a compatible patient who is willing to accept her kidney.

44In our theoretical investigations, we do not distinguish between paired and unpaired patients. Nevertheless, when
the algorithm treats paired and unpaired patients in a symmetric way, both types of patients would benefit from
the inflow of deceased donors. Indeed, at an intuitive level, when the algorithm treats paired and unpaired patients
symmetrically, the waiting time of unpaired patients corresponds to the waiting time of an arriving patient conditional
on the event that he is not matched upon arriving (recall that, by definition, unpaired patients are not matched upon
arriving). Using our main result that the unconditional waiting time decreases in µ, one can show that the same holds
true for this conditional waiting time.
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removed from the market. As before, the interpretation is that this living donor gives his kidney
to a patient waiting on the DDL. Under Pairwise, however, the selected living donor naturally
corresponds to the intended living donor of the patient getting matched to the deceased donor (in
order not to create any unpaired patient/donor).

Definition 4.3 (Pairwise with DDL). If any new patient-donor pair vi enters the market at time
t, then match them with any cross-compatible patient-donor pair (if any), breaking ties in favor of
hard-to-match patients. If any deceased donor ddi arrives at t, match ddi to a compatible patient
(if any), breaking ties in favor of hard-to-match patients. When ddi is matched with a patient, the
living donor associated with the matched patient is removed from the market. If ddi is incompatible
with all the patients in the market, remove ddi.

The following result, proved in the Appendix E, characterizes the waiting time of the Pairwise
with DDL algorithm.45

Proposition 4.4. Under the Pairwise with DDL algorithm, for the waiting time of easy-to-match
patients, we have:

lim
pH→0

pHWE(Pairwise) = 0.

For the waiting time of hard-to-match patient,

1. If µ > n(2λ− 1), we have:

lim
pH→0

pHWH(Pairwise) =
c

λ · n
.

where c solves
n(1− λ)e−cpE + µe−c = n(1− 2λ) + µ.

2. If µ < n(2λ− 1), we have:

lim
pH→0

p2HWH(Pairwise) =
ln (2λn)− ln (n+ µ)

λ · n
.

When the rate of arrival of deceased donor is large, the performance is mainly determined by
deceased donors, and thus the exchange algorithm is less important. Proposition 4.4 formalizes this
intuition: When µ is high, the average waiting time of Pairwise with DDL is close to Unpaired with
DDL, in the sense that they are both proportional to 1/pH . Note, however, that even in this case,
the waiting time of Pairwise is always larger than Unpaired (see Figure 6 panel A for an illustration).

On the other hand, when µ is not too large (µ < n(2λ − 1)), then the results of Theorem 2.7
extend: the scaling of the average waiting time under Pairwise is 1/p2H , an order of magnitude higher
than Unpaired. Panel B of Figure 6 illustrates this result.

45We did not find a closed form expression for the waiting time of the Pairwise with DDL algorithm in the knife-edge
case where µ = n(2λ− 1).
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Finally, in the Appendix D, we define and analyze a modified version of the Optimal algorithm
that may use deceased donors.46 We prove that the Unpaired algorithm’s performance is close to
the Optimal algorithm—even closer than what we obtained under µ = 0 in Theorem 2.8.

Taken together, these findings show that even though the availability of deceased donors improves
the performance of all algorithms, our previous theoretical results remain qualitatively similar. This
is clear from comparing Figure 2 and Figure 6.

Remark 4.5. In our context, one can also naturally define the Chain with DDL algorithm.47 We
do not formally characterize the expected waiting times of Chains with DDL. Chain algorithm is
challenging to study (even with no DDL, Ashlagi et al. (2019) had to assume that pE = 1). However,
in the one-type model (i.e., λ = 1), one can easily show that Unpaired with DDL outperforms Chain
with DDL. Indeed, under Chain with DDL, an arriving patient has probability pH to be matched with
the altruistic/bridge donor right away. With the complement probability (which tends to 1 as pH
vanishes), this patient will be unmatched and enter the pool. In that event, she will have to wait (1)
either for an arriving patient to be compatible with the altruistic/bridge donor (which is necessary
to initiate a chain-segment), which occurs with rate npH ; (2) or for a compatible deceased donor
to arrive which occurs with rate µpH . Thus, in expectation, this patient will have a waiting time
bounded from below by 1

(n+µ)pH
. This is larger than ln

(
2n+µ
n+µ

)
/(npH), the waiting time of patients

under the Unpaired with DDL algorithm (see Proposition 4.2).48,49

Impact of the market size. What happens to these performances of the algorithms that employ
DDLs when the arrival rates of pairs increases? On one hand, an increase in the arrival rate of
patient-donor pairs n (while fixing µ, the arrival rate of deceased donors) can increase the demand
for deceased donors, which in turn can increase the waiting time of patients. On the other hand, an
increase in the arrival rate of pairs makes the market thicker, which in turn can decrease the waiting
time. Which force is more powerful is ex ante non-obvious.

A simple inspection of Proposition 4.2 shows that the second effect always dominates the first
effect for the Unpaired with DDL—an increase in the arrival rate of pairs always deceases the waiting

46Essentially, the Optimal algorithm with DDL is the one that—among all matching algorithms—achieves the
minimal average waiting time when using both kidneys from living and deceased donors under the constraint that,
each time a deceased donor is matched to a patient, a living donor is removed from the system. The motivation
for imposing this constraint is the same as under Unpaired/Pairwise: we do not want our algorithms to impose any
negative externalities on patients waiting for a deceased donor. The interpretation is thus that the living donor
removed gives his kidney to one of the (numerous) patients waiting for a deceased donor. A formal definition of
Optimal with DDL algorithm is given in Section D of the Appendix where, generalizing Theorem 2.8, we provide a
lower bound on the average waiting time achieved under this version of the Optimal algorithm.

47Informally, under Chain with DDL, patients in the pool will be offered kidneys from chain-segment (sparked by
arriving patients compatible with the altruistic/bridge donor) as well as arriving DDL kidneys. In the latter event,
the intended living donor will have to donate his kidney to a patient waiting on the DDL.

48That ln
(

2n+µ
n+µ

)
/n ≤ 1/(n + µ) holds since this can be rewritten as ln(n/(n + µ) + 1) ≤ n/(n + µ) which holds

true since n/(n+ µ) is a positive number smaller than 1.
49Further note that the argument applies both to the case where the chain algorithm identifies a chain-segment in

a greedy fashion or optimally.
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Figure 6: Waiting Time under Each Algorithm and the Arrival Rate of Hard-to-match Patients (λ)

Notes: Given pE = 1, n = 1, the above graph shows for µ = 2 for panel (A) and µ = 3/4 for panel (B), as a function of

the arrival rate of hard-to-match patients (λ), the average waiting times of hard-to-match patients under Pairwise with DDL,

Unpaired with DDL algorithms, as well as a lower bound of the average waiting time achieved under the Optimal algorithm

with DDL.

time.50 This seemingly obvious comparative static becomes less obvious when one notes that this
is not the case for Pairwise with DDL; that is, an increase in n can either increase or decrease the
waiting time, depending on the parameters.

To get a simple intuition for this observation, consider a patient p currently waiting in the system.
A new arriving patient will ‘compete’ with patient p for deceased donors. However, the new patient
comes into the system with an incompatible donor, who is as likely to be compatible to p as any
deceased donor. Thus, the new donor more than compensates for the reduction in the probability of
getting matched to a deceased donor. This simple intuition though does not apply to the Pairwise:
the likelihood of being compatible with an arriving deceased donor is larger than the likelihood of
being cross-compatible with an arriving pair. This is particularly problematic when many arriving
patients are hard-to-match. As illustrated in Figure 7, the negative force can dominate the positive
force when λ is large. One can show that for low values of λ, the positive force can dominate, whereas
for intermediate values of λ, the comparison is more tricky and the waiting time under Pairwise can
be a U-shaped function of n.51

50As discussed in footnote 44, if paired and unpaired patients are treated in a symmetric way by our algorithm,
the decreasing relationship between waiting time and n should hold true for both paired and unpaired patients. We
indeed observe this pattern for unpaired patients in our simulations (see Section 4.2).

51We formally show in Section F of the appendix that for large values of λ the waiting time under Pairwise with
DDL is increasing in n in the most favorable regime for Pairwise, i.e., when µ > n(2λ− 1).
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4.2 Integrating Deceased Donors: Empirics

Using the same data from France as in Section 3, we now evaluate the performance of Unpaired with
DDL and compare it with Pairwise with DDL.52

A practical challenge of this algorithm is that DDL kidneys typically have lower quality than
living kidneys. If we were to offer any type of DDL kidneys, some pairs would receive a kidney that
is of lower quality than the kidney they provide (in expectation), which then may discourage them
joining the system to begin with. We address this issue by selecting, for each patient, a DDL kidney
that has a KDPI below the LKDPI of the patient’s paired incompatible donor.53 As we explained
in footnote 32, KDPI and LKDPI are two comparable quality measures for DDL and living donor
kidneys, respectively.

While we control and vary the market size by the daily Poisson arrival rate of pairs n, we keep
the arrival of DDL kidneys fixed. This captures the fact that, while the arrival rate of patient-donor
pairs changes as a KEP is more or less successful, the arrival of DDL kidneys is typically exogenous.
We also assume that each DDL kidney arrives on its actual arrival date in the data and is available
for transplant on that date only.

Assessment of algorithms with DDL. We first evaluate Unpaired and Pairwise with DDL
algorithms. Figure 8 (panel A) shows the results for various market sizes. Relative to Pairwise
and Unpaired without DDL (Appendix Figure I.1), both algorithms have a significantly improved
performance: the mean waiting time of patients is reduced by about 88 to 91 percent. Yet, Unpaired

52In our simulations, under Pairwise with DDL we remove a paired patient’s associated living donor from the market
when that patient receives a DDL kidney. This is feasible since all patients are paired. Under Unpaired with DDL, we
do this as long as this is feasible. For unpaired patients (whose donor has already donated), we remove one unpaired
donor from the market. This is feasible because there always exist an equal number of unpaired patients and donors.

53In Appendix H.4, we present the selection process of Deceased-Donor Kidneys in details. Moreover, we show in
Appendix J that our results are robust to the use of a more demanding screening criterion.
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still performs better than Pairwise, and is fairly close to the Omniscient. For the market size of
the French KEP, for instance, the mean waiting time of Unpaired with DDL is around 43 days, the
Omniscient is 38 days, and the Pairwise with DDL is 54 days. Unpaired with DDL also diminishes
the waiting time of unpaired patients. For the market size of the French KEP, the median waiting
time in P falls to 50 days (vs. 245 days for Unpaired without DDL). Hence, even in small markets,
the main practical challenge associated with the Unpaired algorithm is drastically reduced thanks
to the integration of the DDL. This is even more the case in larger markets. As shown in Figure I.2
(Panel A), time in P decreases sharply as the arrival rate of pairs increases.54
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Figure 8: Performance of Pairwise/Unpaired with DDL: Various Market Sizes

Notes: This figure shows the performance of the three algorithms with DDL in markets of eight different sizes, n ∈
{0.05, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}. The vertical lines indicate the size of some real-life KEPs. In each simulated market, Om-

niscient is allowed to use the DDL kidneys that are actually taken by Unpaired with DDL.

The improved performance of Unpaired and Pairwise with DDL comes, at least partially, from
the patients’ access to DDL kidneys. As depicted in Figure 8 (panel B), for both algorithms, the
share of patients receiving a kidney from a living donor increases with market size and is significantly
higher under Unpaired with DDL compared to Pairwise with DDL for all market sizes. Moreover,
this match rate with living donors is close to zero under Pairwise with DDL for a market size
corresponding to the French KEP (n = 0.05). Hence, in that configuration, the system will de facto
reduce to what is known as list exchange.55

A low match rate with living donors can have important fairness consequences such as hurting
blood type O patients who already have the longest waiting time.56 Indeed, many incompatible
pairs have an O patient and a non-O donor.57 Then, with a low match rate with living donors,
many pairs will donate a non-O kidney to the DDL while they will eventually obtain an O-donor.

54We find the same pattern for the median waiting time of Unpaired donors. It falls to 65 days (vs. 339 days for
Unpaired without DDL) for n = 0.05 and it is decreasing in n, reaching 38 days for n = 2.

55List exchange allows a living donor to donate to a patient on the DDL and, in return, her paired patient obtains
a high priority on the DDL (Delmonico et al., 2004). See also Section 5 for further details on List exchange.

56Glander et al. (2010) report the waiting time of patients in the US, showing that O patients wait the longest. The
same pattern is observed in France as reported here (see Table R9): https://www.agence-biomedecine.fr/annexes/
bilan2017/donnees/organes/06-rein/synthese.htm#tR9.

57Among the 586 incompatible pairs of our data set, almost 60% have an O patient while more than 60% have a
non-O donor (see Table 1).
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This problem constitutes a major objection against list exchange (Ross and Woodle, 2000). The
impact for O patients of algorithms like Unpaired and Pairwise with DDL is twofold. On the one
hand, O patients waiting on the DDL are likely to suffer a loss (measured by the difference between
the number of O deceased donors offered to patients in the program and the number of O living
donors given back to the DDL). On the other hand, many O patients would have access to a graft
in the program thanks to those algorithms. In the sequel, we focus on the overall gains (or losses)
for O patients (measured by the difference between the number of O patients grafted in the system
and the loss for O patients waiting on the DDL). As reported on Table I.2 (in Appendix I), the
loss for O patients waiting on the DDL is systematically higher under Pairwise with DDL than
under Unpaired with DDL. Moreover, the overall gains generated by Unpaired with DDL are always
positive and always higher than those generated by Pairwise with DDL. Hence, compared to Pairwise
with DDL, the good performances of the Unpaired with DDL algorithm do not come at the expense
of O patients.

As pointed out by Zenios et al. (2001), the fairness issue for O-patients might also be mitigated if
patients were incentivized to bring an O rather than a non-O donor. However, in algorithms offering
a high priority for DDL kidneys for patients participating to the KEP, these incentives are weak
since patients expect to receive quickly a DDL offer regardless of the type of donor they bring to
the system. This is confirmed in our simulations. For both Pairwise and Unpaired with DDL, we
observe that patients bringing an O donor wait longer time than patients bringing a non-O donor
(see Table I.2).

Final proposal. The above discussion motivates us to consider a version of the Unpaired with
DDL, as defined below, as the most practically plausible solution (we also define further a related
version of Pairwise with DDL):

Definition 4.6 (Unpaired with DDL with δ Delay). Each patient is required to wait for δ months
before receiving any DDL kidney offers. Patients can always receive living donor offers based on
the rules of the Unpaired algorithm. Patients whose donors have already donated can receive DDL
kidney offers at any time.

This modified algorithm works like the standard Unpaired with DDL algorithm, but requires
patients to wait for at least δ months before receiving any DDL kidneys if their donor has not
already donated. This will provide incentives for patients to find a donor who is likely to donate
soon to a patient in the KEP (e.g., an O donor who is likely to be compatible with many patients),
so that they can receive high quality DDL kidneys as soon as possible.58

One can also similarly define Pairwise with DDL with δ Delay, where a patient is also required
to wait for δ months before receiving any DDL kidney offers but living donations are based on the

58Table I.2 reports the average waiting time of patients as a function of the blood type of the donor they bring to
the system. As already mentioned, when δ = 0, on average the patients with an O donor wait the longest. However,
when δ = 6 this result is reversed, patients having an O donor wait the shortest.
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rules of the Pairwise algorithm.59 This algorithm can be seen as a practical version of Pairwise with
DDL which can be a good alternative if policymakers have strong preferences for avoiding unpairing
patients and donors.

Notice that if δ = 0, these algorithms turn into the standard Unpaired with DDL/Pairwise with
DDL. Thus, the key question is, for practical purposes, what is the right value of δ? On one hand,
a smaller delay parameter creates an incentive for patients to enter with low-value donors. On the
other hand, a larger delay parameter disincentivizes some patients to join the system and, more
importantly, imposes a waiting cost on patients who are under dialysis.

Finding the “optimal” value of δ is a context-dependent exercise that requires a comprehensive
evaluation of various factors beyond the scope of this paper. Nevertheless, we simulate the system
for a series of reasonable delay parameters. Here we only focus on δ = 6 months, though results are
qualitatively similar for δ = 3 or 9 months as well as a wide range of δ values (we discuss robustness
of results with respect to δ in Figure I.3 of the appendix).60 In general, the match rate with living
donors increases with δ, ceteris paribus. Hence, a KEP may also use historical data to select the
lowest δ value to approximately achieve its desired match rate with living donors.

Figure 9 presents the results for various market sizes. Naturally, relative to δ = 0 (Figure 8), the
mean waiting time increases when δ = 6 months (panel A). Despite the fact that we require patients
to wait for 180 days before receiving a DDL kidney (unless their donors have already donated), the
Unpaired algorithm manages to keep the waiting time under 90 days. In addition, panel B shows
that the match rate with living donors is significantly increased. Unpaired with DDL matches 55 to
73 percent of patients with a living donor, a sizable increase relative to δ = 0.
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Figure 9: Performance of Pairwise/Unpaired with DDL & δ = 6 Months: Various Market Sizes

Notes: This figure shows the performance of the three algorithms with DDL in markets of eight different sizes, n ∈
{0.05, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}. The vertical lines indicate the size of some real-life KEPs. Each patient to wait for δ = 6
months before receiving any DDL kidney offers under each algorithm, while the patient can still receive living donor offers
during that δ months.

59Pairwise with DDL (without delay) suffers from the same drawbacks as Unpaired with DDL in terms of fairness
for the O patients waiting on the DDL and incentives to bring an O donor to join the KEP (see Section 4.2). Hence,
Pairwise with DDL with δ Delay might be viewed as an implementable version of the Pairwise with DDL algorithm.

60We consider δ = 6 months as a reasonable waiting time in the French context. As discussed in footnote 25, an
incompatible pair usually participates in KEP for 3.4 match runs, amounting to waiting for 9-12 months.
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For the market size n = 0.05, or a size similar to the French KEP, columns (6) and (7) of Table 2
show more statistics. In particular, for Unpaired with DLL and δ = 6 months, the two potential
issues discussed in Section 3.4 are almost negligible. A median unpaired patient only waits for 6 days
before receiving a kidney, and a median unpaired donor waits 39 days in donating a kidney.61 Even
the hard-to-match patients (high PRA patients and O patients) do not need to wait long: median
waiting time for such unpaired patients is below 55 days.

Figure 9 and Table 2 also allow us to compare the versions with delay of Unpaired with DDL and
Pairwise with DDL. The performances of Pairwise, in terms of waiting time of patients, transplant
rate, and match rate with living, are substantially worse than those of Unpaired. However, by
construction, Pairwise entirely removes the two incentives issues because it does not create any
unpaired patient/donor.

5 Practices Related to the Unpaired Algorithm

Our proposed Unpaired algorithm eliminates the timing constraints on the donation and receipt
for any incompatible pair. Specifically, it allows receipt-before-donation (i.e., a patient can receive
a kidney before her paired donor donates to some other patient) as well as donation-before-receipt
(i.e., a donor can donate before her paired patient receives a transplant). Some recent practices also
relax the timing constraints, and we discuss their connection to the Unpaired algorithm below.

Vouchers. A voucher program, introduced in Veale et al. (2017), allows donation-before-receipt.
An example of such program is the Advanced Donation Program (ADP) implemented by NKR.62

When an advance donation happens, the paired patient obtains a voucher that gives her a higher
priority for a kidney in the future. In the ADP, a patient with a voucher will have a high priority
for receiving a kidney from a donor who would otherwise end a chain.63

Combined with the Chain algorithm, the ADP allows both donation-before-receipt and receipt-
before-donation, but with important restrictions. For example, a patient with a voucher is offered
a donor kidney only when the donor’s paired patient has already received a transplant in a chain
and when the donor kidney is incompatible with all patients in the remaining pairs. Moreover, an
advanced donor can only donate to patients whose donors have not donated. As a result, patients
with a voucher in ADP tend to wait for a long time.64

61Interestingly, the introduction of a delay to the Unpaired with DDL algorithm reduces the waiting time of patients
in P (see Figure I.2 for a comparison of waiting times in P for the algorithms without and with delay). Indeed, in the
absence of any delay, more patients outside P receive a kidney from a deceased donor such that more living donors
are given back to the DDL. This reduces the chance of getting a match for a patient in P.

62Flechner et al. (2015) report 10 advanced donations within NKR from August 2011 to August 2014. Since then,
ADP has expanded. As of April 27, 2020, there have been about 500 advanced donations. Half of these donations are
from donors whose paired incompatible patient is in urgent need of a kidney (see NKR’s quarterly report on paired
kidney exchange for Q1 2020; available at https://www.kidneyregistry.org/pages/c6/nkr_quarterly_reports).

63In the priority order, the patients with a voucher are right after former NKR donors in need of a kidney transplant
and patients involved in real-time swap failures where the donor has donated but the patient did not receive a kidney;
see Tenenbaum (2018).

64Among NKR’s 10 advanced donations during August 2011 to August 2014, by the end of that period, 8 of the
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In contrast, an unpaired patient in Unpaired can receive a kidney from any donor, paired or
unpaired, while a donor can donate to any compatible patient, paired or unpaired. In this sense, the
Unpaired algorithm generalizes advanced donation by relaxing the constraints on donation-before-
receipt and integrating it with receipt-before-donation.

List Exchange. The Unpaired with DDL algorithm that we introduced combines the Unpaired
algorithm with the DDL. Certain integrations of DDL and living donation are already observed
in practice. Upon the approval of United Network for Organ Sharing, the New England region
implemented a program called List Exchange. It allows a living donor to donate to a patient on the
DDL and, in return, her paired patient obtains a high priority on the DDL (Delmonico et al., 2004).
In other words, it allows donation-before-receipt for donations to the DDL.

As already discussed, one important objection against list-exchange lies in the fact that it can
hurt blood-type O patients who already have the longest waiting time on the DDL (Ross and Woodle,
2000). As discussed in Section 4.2, Unpaired with DDL is less detrimental to O patients waiting on
the DDL and more beneficial to O patients in general (including those participating to the KEP)
compared to Pairwise with DDL (which essentially corresponds to List Exchange). Moreover, List
Exchange does not incentivize patients to find a O donor since any healthy kidney will be quickly
accepted by some patients on the DDL due to the huge excess demand. In contrast, our final
proposal – Unpaired with DDL and delay – may increase the supply of highly sought-after kidneys,
O kidneys in particular, because a patient with a O donor is likely to be matched earlier. Indeed,
in this proposal, a paired patient can only receive from a deceased donor after few months while
an unpaired patient is offered deceased donor kidneys immediatly. By definition, a patient becomes
unpaired as soon as the paired donor has donated which is more likely to happen if this donor is of
blood type O.

Deceased donor-initiated chain. Roth et al. (2004) contains a proposal on how to integrate
List Exchange with kidney exchange programs: Instead of donating directly to the DDL, a donor
could initiate a chain of transplant within the KEP, in exchange of a high priority on the DDL for
her intended patient. This proposal is close to our Unpaired with DDL algorithm as it integrates
the DDL and the KEP and it allows donation-before-receipt (the first donor of the chain donates
before her patient receives from a deceased donor) and possibly receipt-before-donation (along a
chain of transplant initiated by this first donor). The main difference between the two lies in the
fact that, under Unpaired with DDL, the patient who was associated with the first donor of the
chain not only benefit from a high priority on the DDL but can also receive a living donation. While
the proposal made by Roth et al. (2004) has not been implemented so far, the latest revision of

10 patients had received a kidney 178 days on average after their donors had donated (Flechner et al., 2015). In
our simulations of market sizes comparable to NKR, the Unpaired algorithm leads to an average waiting time in P,
conditional on receiving a transplant, of 61 days. Moreover, Tenenbaum (2018) reports that ADP notifies hard-to-
match patients (typically hypersensitized) that the waiting time after their donor has donated may often exceed 1–2
years. In our simulations the mean waiting time in P (conditionally on receiving a transplant) for hypersensitized
patients is only 147 days.
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the bioethics law in France allows a variant of it (Combe et al., 2022). Moreover, another kind of
deceased donor-initiated chain has been at work in Italy since 2019 (Furian et al., 2019). Under
this alternative design, patients from incompatible pairs benefit from a high priority on the DDL,
and a donor of those pairs initiate a chain only after her intended patient has received a deceased
donor kidney. As discussed in Section 4.2, all those mechanisms giving a high priority on the DDL
for patients participating to the KEP mitigate the incentives that patients have to bring a O donor.
One possibility to restore those incentives would be to impose a delay between the arrival date of an
incompatible pair in the program and the date at which the patient of this pair benefits from a high
priority on the DDL, as suggested by Wang et al. (2021).65 This is in line with our final proposal
Unpaired with DDL and delay.

In sum, the implementation of the voucher program and List Exchange in practice and the reform
in France make us optimistic about the potential of Unpaired, as well as Unpaired with DDL, to
promote kidney exchange. The innovations in our algorithm have been shown to be acceptable
in practice, while our algorithms enjoy significant performance advantages relative to state-of-art
algorithms.

6 Conclusion

We have proposed a new matching algorithm, Unpaired kidney exchange, and argued that it sig-
nificantly improves upon the outcome of currently utilized state-of-the-art algorithms. The main
reason is that Unpaired eliminates the common simultaneity constraints. In this sense, our results
provide not only a new policy but also a tool to evaluate the costs of those constraints.

Eliminating those simultaneity constraints brings two practical challenges, the potentially long
waiting times of a patient after her paired donor’s donation and of a donor after her paired patient’s
transplantation. We have proposed several solutions and recommended a practical version, an in-
tegration of Unpaired with the deceased donor list, while a patient is eligible for a deceased-donor
kidney after a pre-specified time or immediately after her paired donor’s donation.

One thing we have not systematically examined is endogenous participation in the kidney ex-
change. In practice, seeing the algorithm in use, a patient-donor pair will decide if they want to
participate in the exchange, a participating pair will decide if they want to quit and choose desen-
sitization, and a patient may even be incentivized to find a different type of donor. Ignoring such
endogenous responses, our results are likely to provide a lower bound of the advantages of Unpaired.
When more pairs participate in a more efficient exchange, the performance of the exchange will
be further enhanced because a larger market size in general improves the performance of every al-
gorithm. We believe that a systematic analysis taking into account endogenous participation is a

65Wang et al. (2021) simulate the impact of authorizing deceased donor-initiated chain in the US. They write “It
may seem important to have a period of time before a new arrival to the kidney paired donation pool is eligible for a
deceased donor chain-initiating kidneys transplant, so the delay time of 0, which is optimum in terms of the number
of transplants achieved, may not be acceptable. A delay time of 3 months or possibly 6 months may be a reasonable
compromise.”
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fruitful avenue for future research.66

When taking a new algorithm to practice, patients and donors may be skeptical. Here we are
hopeful that the combination of theory and evidence in this paper will alleviate this skepticism. We
have shown that if Unpaired or Unpaired with DDL had been employed in some existing markets,
participants’ outcomes would have been meaningfully improved. We have also explained theoretically
why we should expect this to be the case. This combination of evidence and theory gives us confidence
that any future application of the Unpaired algorithms will improve patient outcomes.

66The rational queueing literature (see Hassin (2016)) is dealing with decisions of participation in queueing systems
where agents tradeoffs their waiting times to get served/matched with their outside option. There are only few
attempts of adapting these frameworks to dynamic matching environments, see Baccara et al. (2020) and Che and
Tercieux (2020).
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A Proof of Proposition 2.6

In Proposition 4.2, we characterize the average waiting time of patients under the Unpaired with
DDL algorithm defined in Section 4.1 (Definition 4.1). This algorithm corresponds to the Unpaired
algorithm except from the fact that patients might receive a graft from deceased donors who arrive
in the market at rate µ. It is clear from Definition 4.1 that the two algorithms are equivalent when
there is no deceased donors (i.e. when µ = 0). Hence the waiting times under the unpaired algorithm
can be directly deduced from the waiting time under the unpaired with DDL algorithm – provided
in Proposition 4.2 – fixing µ = 0 (the proof of Proposition 4.2 is provided in Appendix C). The
results of Proposition 2.6 directly follow.

B Other Proofs

B.1 Proof of Theorem 2.7

We deduce from the Theorem 1 and Lemma 4 in Ashlagi et al. (2019)B.1 that

lim
pH→0

pHW(Pairwise) =


ln(2λ)
npH

if λ ≥ 1
2

ln( 1−λ
2λ−1)
npE

if λ < 1
2

(B.1)

Using (B.1) and the average waiting time under unpaired derived in Proposition 2.6, we immediately
get that

lim
pH→0

W(Pairwise)

W(Unpaired)
=


ln(2λ)
ln(1+λ) ·

1
pH

if λ ≥ 1
2

ln( 1−λ
1−2λ)

ln(1+λ) ·
1
pE

if λ < 1
2

B.2 Proof of Theorem 2.8 and Remark 2.9

The following result implies the statements in Theorem 2.8 as well as in Remark 2.9.

Proposition B.1. Fix a matching algorithm ALG inducing a stochastic process with an invariant
distribution. (1) We must have

lim
pH→0

sup
W(Unpaired)

W(ALG)
≤ 2

ln (1 + λ)

λ
.

(2) Assume that limpH→0 pHWE(ALG) = 0. Then,

lim
pH→0

sup
W(Unpaired)

W(ALG)
≤ (1 + λ)

ln (1 + λ)

λ
.

Let us denote the size of the pool by k̃. In the sequel, W̃(ALG) is the random variable describing
the average waiting time of an arriving patient. Note that a necessary condition for a patient to be

B.1Theorem 1 enunciates the average waiting time for hard-to-match patients while Lemma 4 proposes an upper
bound for the waiting time of easy-to-match patients. From this Lemma we get that limpH→0 pHWE(Pairwise) = 0.
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matched is that he is compatible with a donor in the pool upon arriving or, in case this does not
occur, he is compatible with a donor in the future. In the former case, his waiting time is simply 0

while in the latter case, by the Poisson thinning property, the expected waiting time is 1
npT

if the
patient is of type T ∈ {H,E}.B.2 Hence, we obtain

E
[
W̃(ALG)

∣∣∣k̃ = k
]
≥ λ(1− pH)k

1

npH
+ (1− λ) (1− pE)k

1

npE

≥ λ

[
(1− kpH)

1

npH

]
+ (1− λ)

[
(1− kpE)

1

npE

]
=

λ

npH
+

1− λ
npE

− k 1

n
.

Thus, using the fact that, by Little’s law, W(ALG) =
E[k̃]
n , we have

W(ALG) = E
[
E
[
W̃(ALG)

∣∣∣k̃ = k
]]

≥ λ

npH
+

1− λ
npE

− 1

n
E
[
k̃
]

=
λ

npH
+

1− λ
npE

−W(ALG).

This gives us

W(ALG) ≥ λ

2npH
+

1− λ
2npE

. (B.2)

Now, we are in a position to prove the point (1) of the proposition. Indeed,

lim
pH→0

sup
W(Unpaired)

W(ALG)
=

limpH→0 pHW(Unpaired)

limpH→0 inf pHW(ALG)
≤

ln(1+λ)
n
λ
2n

= 2
ln (1 + λ)

λ
.

where the inequality holds by Proposition 2.6 and together with Equation (B.2).
Now, to show point (2) of the proposition, further note that using a similar logic one can show

that

WH(ALG) = E
[
E
[
W̃H(ALG)

∣∣∣k̃ = k
]]

≥ λ

npH
− 1

n
E
[
k̃
]

=
λ

npH
−W(ALG)

=
λ

npH
− λWH(ALG)− (1− λ)WE(ALG)

(where W̃H(ALG) is the random variable describing the average waiting time of an arriving hard-
B.2The argument below works for any pE ≤ 1.
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to-match patient) which yields

(1 + λ)WH(ALG) ≥ λ

npH
− (1− λ)WE(ALG)

Now, under the assumption that WE(ALG)pH goes to 0 when pH vanishes, obtain that

lim
pH→0

pHW(ALG) = lim
pH→0

pHWH(ALG) ≥ λ

n(1 + λ)
.

Hence,

lim
pH→0

sup
W(Unpaired)

W(ALG)
≤

ln(1+λ)
n
λ

n(1+λ)

= (1 + λ)
ln (1 + λ)

λ
.

We now complete the proof of Theorem 2.8.

Completion of the proof of Theorem 2.8. Using the point (2) of Proposition B.1, we obtain
that

lim
pH→0

sup
W(Unpaired)

W(Optimal)
≤ 2

ln (1 + λ)

λ
.

Indeed, assume that limpH→0 sup W(Unpaired)
W(Optimal) > 2 ln(1+λ)

λ . By definition, of OPT, there exists a se-
quence of matching algorithms {ALGn}n≥1 such that W(ALGn) → W(OPT). Then, this means
that for n large enough, W(Unpaired)

W(ALGn)
> 2 ln(1+λ)

λ , a contradiction with point (2) of the above propo-
sition.

B.3 Proof of Theorem 2.10

We know from the Proposition 1 in Ashlagi et al. (2019) that, when pE = 1B.3

lim
pH→0

pHW(Chain) =
ln
(

1
1−λ

)
n

(B.3)

Using (B.3) and the waiting time under unpaired derived in Proposition 2.6, we immediately get
that

lim
pH→0

W(Chain)

W(Unpaired)
=

ln
(

1
1−λ

)
ln(1 + λ)

= − ln(1− λ)

ln(1 + λ)

B.3Note that, when pE = 1, an arriving easy-to-match patient is immediately matched by the bridge donor so that
limpH→0 pHW(Chain) = limpH→0 pHλWH(Chain).
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C Proof of Proposition 4.2

This section is organized as follows. We first give the basic description of the Markov chain (over
the number of patients of each type (kH , kE)) induced by the Unpaired algorithm as well as some
basic definitions that will be used all along the proof (Section C.1). We define k∗H as the number
of hard-to-match patients which equalizes the transition rates from k∗H to k∗H + 1 and that from
k∗H to k∗H − 1 assuming that no easy-to-match patients is in the pool. Then, the formal argument
is presented and we prove that, at the invariant distribution, as pH vanishes, the number of hard-
to-match patients waiting in the system is highly concentrated around k∗H . We split the proof into
two blocks. In a first block, we show that the number of hard-to-match patients remaining in the
system at the invariant distribution puts vanishing weight above k∗H (Section C.2). In the second
block (Section C.3), we prove the concentration result, i.e., show that this upper bound is actually
tight. In order to prove the tightness result, we need to prove that with probability going to 1, the
number of easy-to-match patients remaining in the pool is “small,” i.e., we show that it is of order
smaller than 1/pH .

Finally, we explain how we can use the bounds to obtain Proposition 2.6 (Section C.4).

C.1 Preliminaries

We make several preliminary remarks. First, under the unpaired exchange algorithm, one can easily
check that the number of patients remaining in the system equals the number of donors remaining
(St = Zt for all t). This is useful since we can simply focus on the evolution of the number of patients
of each type remaining in the system.

We denote by Q the transition rate matrix over states N× N. We will focus on the following
transition rates:

Q([kH , kE ], [kH + 1, kE ]) = nλ(1− pH)kE+kH (1− pE)kE (1− pH)kH

Q([kH , kE ], [kH − 1, kE ]) = n
{
λ[1− (1− pH)kE+kH ][1− (1− pH)kH ]+

(1− λ)[1− (1− pE)kE+kH ][1− (1− pH)kH ]
}

+µ[1− (1− pH)kH ]

Q([kH , kE ], [kH , kE + 1]) = n(1− λ)(1− pE)kE+kH (1− pE)kE (1− pH)kH

Q([kH , kE ], [kH , kE − 1]) = n
{
λ[1− (1− pH)kE+kH ](1− pH)kH [1− (1− pE)kE ]+

(1− λ)[1− (1− pE)kE+kH ](1− pH)kH [1− (1− pE)kE ]
}

+µ(1− pH)kH [1− (1− pE)kE ]

Q([kH , kE ], [kH + 1, kE − 1]) = nλ(1− pH)kE+kH (1− pH)kH [1− (1− pE)kE ]

Q([kH , kE ], [kH − 1, kE + 1]) = n(1− λ)(1− pE)kE+kH [1− (1− pH)kH ]

Let also first recall that the Global Balance Equations (GBE) are a set of equations that char-
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acterize the invariant distribution of a Markov chain, when such a distribution exists. The above
stochastic process is a Markov chain which has an invariant distribution as proved in Appendix C.5.
In the sequel, we let π be this invariant distribution. The GBE can be stated as follows: for any
subset S ⊂ N× N, we must have:∑

j∈S
π(j)

∑
i/∈S

Q(j, i) =
∑
i/∈S

π(i)
∑
j∈S

Q(i, j) (C.4)

Finally, let us define k∗H as the real number ensuring

nλ(1− pH)2k
∗
H = nλ

[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]
. (C.5)

Simple algebra shows that
(n(1 + λ) + µ)(1− pH)k

∗
H = n+ µ (C.6)

and so
k∗H =

ln [n(1 + λ) + µ]− ln (n+ µ)

− ln(1− pH)
.

In what follows, we sometimes use the notation πH (resp. πE) for the marginal of distribution π on
the first (resp. second) dimension of the state space, i.e., πH(kH) :=

∑∞
kE=0 π(kH , kE).

C.2 Upper-bound result

In the sequel, we first prove the following result providing an upper-bound on the number of hard-
to-match patients.

Proposition C.1. Fix any δ > 0,

πH

{
kH :

kH
1/(− ln(1− pH))

≥ ln [n(1 + λ) + µ]− ln (n+ µ) + δ

}
→ 0

as pH vanishes.

In order to show this, the following intermediary result is useful.

Lemma C.2. The following must hold

nλ
[
1− (1− pH)k+1

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k+1

]
nλ(1− pH)2k

≥

nλ
[
1− (1− pH)k+1

]
+ (n(1− λ) + µ)

[
1− (1− pH)k+1

]
nλ(1− pH)k

if k ≥ k∗H . The inequality holds in the other direction if k ≤ k∗H − 1.

Proof of Lemma C.2. Using simple algebra one can show that the inequality stated in Lemma C.2
is equivalent to

n+ µ ≥ nλ(1− pH)k+1 + (n+ µ)(1− pH)k.
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If k ≥ k∗H , using (C.6), we have that (n(1 + λ) + µ)(1− pH)k ≤ n+ µ. Since

(n(1 + λ) + µ)(1− pH)k ≥ nλ(1− pH)k+1 + (n+ µ)(1− pH)k,

we are getting the above inequality for k ≥ k∗H , as claimed. If k ≤ k∗H − 1, using (C.6) again,
(n(1 + λ) + µ)(1− pH)k+1 ≥ n+ µ. Since

(n(1 + λ) + µ)(1− pH)k+1 ≤ nλ(1− pH)k+1 + (n+ µ)(1− pH)k,

we are getting the reverse inequality for k ≤ k∗H − 1, as claimed.

We can now show the following lemma.

Lemma C.3. For any ε > 0, there exists a constant ρ ∈ (0, 1) such that, for any pH > 0 and for
any integer kH ≥ k∗H(1 + ε)

πH(kH + 1)

πH(kH)
≤ ρ

Proof of Lemma C.3. Fix any ε > 0, and an arbitrary kH ≥ k∗H(1 + ε) and let us consider the set
S = {0, 1, ..., kH} × N. The GBE (Equation (C.4)) gives us

∞∑
kE=0

π(kH , kE) [Q([kH , kE ] , [kH + 1, kE ]) +Q([kH , kE ] , [kH + 1, kE − 1])]

=
∞∑

kE=0

π(kH + 1, kE) [Q([kH + 1, kE ] , [kH , kE ]) +Q([kH + 1, kE ] , [kH , kE + 1])]

Using the expressions of the transition rates, this can be rewritten as:

∞∑
kE=0

π(kH , kE)
[
nλ(1− pH)kE+kH (1− pH)kH

]

=
∞∑

kE=0

π(kH + 1, kE)

[
nλ
[
1− (1− pH)kE+kH+1

] [
1− (1− pH)kH+1

]
+(n(1− λ) + µ)

[
1− (1− pH)kH+1

] ]
.

Observing that the term in brackets in left-hand side is maximized at kE = 0 while the term in
brackets in the right-hand side is minimized at kE = 0, we get

∑∞
kE=0 π(kH , kE)

[
nλ(1− pH)2kH

]
≥

∑∞
kE=0 π(kH + 1, kE)

[
nλ
[
1− (1− pH)kH+1

]2
+ (n(1− λ) + µ)

[
1− (1− pH)kH+1

]]
.

It implies that

πH(kH)

πH(kH + 1)
≥
nλ
[
1− (1− pH)kH+1

]2
+ (n(1− λ) + µ)

[
1− (1− pH)kH+1

]
nλ(1− pH)2kH

. (C.7)
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where we recall that πH(kH) =
∑∞

kE=0 π(kH , kE).
From the inequality above, we deduce:

πH(kH + 1)

πH(kH)
≤ nλ(1− pH)2kH

nλ [1− (1− pH)kH+1]
2

+ (n(1− λ) + µ) [1− (1− pH)kH+1]

≤ nλ(1− pH)kH

(n+ µ) [1− (1− pH)kH+1]

≤ nλ(1− pH)k
∗
H(1+ε)

(n+ µ)
[
1− (1− pH)k

∗
H(1+ε)

]
=

nλ
(

n+µ
(1+λ)n+µ

)1+ε
(n+ µ)

[
1−

(
n+µ

(1+λ)n+µ

)1+ε] := ρ

<
nλ
(

n+µ
(1+λ)n+µ

)
(n+ µ)

[
1−

(
n+µ

(1+λ)n+µ

)] = 1

where the first inequality comes from the Equation (C.7). The second inequality comes from Lemma
C.2 and kH ≥ (1 + ε)k∗H ≥ k∗H . The third inequality comes from the fact that (1 − pH)kH+1 ≤
(1− pH)kH ≤ (1− pH)(1+ε)k

∗
H . The first equality comes from equation (C.6).

Hence we obtain a positive constant, denoted by ρ, strictly smaller than one and independent of
pH , such that for all kH ≥ k∗H(1 + ε): πH(kH+1)

πH(kH) ≤ ρ.

Using the result stated in Lemma C.3 we can show the following:

Lemma C.4. For any ε > 0, there exists a constant ρ ∈ (0, 1) such that, for any pH > 0 and for
any integer z > 0:

πH {kH : kH ≥ k∗H(1 + ε) + z} ≤ ρz

1− ρ

Proof of Lemma C.4. We know from Lemma C.3 that for all kH ≥ k∗H(1+ε), πH(kH+1) ≤ ρπH(kH)

with ρ ∈ (0, 1).C.4 Then by induction we get that:

πH(k∗H(1 + ε) + i) ≤ ρiπH(k∗H(1 + ε)) (C.8)
C.4In the sequel, for notational convenience, when we write k∗H(1 + ε), we assume it is an integer. If this is not the

case, the argument simply goes through replacing k∗H(1+ ε) by dk∗H(1+ ε)e. Similar abuses of notations (where a real
number has to be replaced by its floor or ceiling) will be used all along the proof.
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It implies that

πH {kH : kH ≥ k∗H(1 + ε) + z} =

+∞∑
i=z

πH(k∗H(1 + ε) + i)

≤
+∞∑
i=z

ρiπH(k∗H(1 + ε))

≤
+∞∑
i=z

ρi =
ρz

1− ρ

where the first inequality comes from the Equation (C.8), the second inequality immediately comes
from the fact that πH(k∗H(1 + ε)) ≤ 1 and the last equality is obtained using the fact that ρ < 1.

Completion of the proof of Proposition C.1. Fix any δ > 0. We want to show that

πH

{
kH :

kH
1/(− ln(1− pH))

≥ ln [n(1 + λ) + µ]− ln (n+ µ) + δ

}
→ 0

as pH vanishes. Let z = 1/
√
pH and fix ε > 0 and pH > 0 small enough so that

[ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε) +
√
pH ≤ ln [n(1 + λ) + µ]− ln (n+ µ) + δ.

Hence, we obtain

πH

{
kH :

kH
1/(− ln(1− pH))

≥ ln [n(1 + λ) + µ]− ln (n+ µ) + δ

}
≤ πH

{
kH :

kH
1/(− ln(1− pH))

≥ [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε) +
√
pH

}
≤ πH

{
kH : kH ≥ k∗H(1 + ε) +

√
pH

− ln(1− pH)

}

≤ ρ

√
pH

− ln(1−pH )

1− ρ
→ 0

where the first inequality is ensured by our choice of ε and pH while the last inequality is by Lemma
C.4 and the convergence result holds since ρ ∈ (0, 1) (still by Lemma C.4) and since −(1/pH) ln(1−
pH) goes to 1 as pH vanishes and so

√
pH

− ln(1−pH) explodes as pH vanishes.

C.3 Lower-bound result

So far, we have provided an upper-bound on the number of hard-to-match patients in the pool.
Recall that the upper-bound, i.e., k∗, is computed by equalizing the transition rates from k∗H to
k∗H + 1 and that from k∗H to k∗H − 1 assuming that no easy-to-match patients is in the pool. Hence,
mathematically, to show that this bound is tight it will be necessary to show that the number of
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easy-to-match patients remaining in the pool is “small”. At an intuitive level, if there was many
easy-to-match patients remaining in the pool, then hard-to-match agents could be matched quickly
and the upper-bound we obtained would be unlikely to be tight.

One issue to prove that the number of easy-to-match patients in the pool is small is the following.
In the (small probability) event that an easy-to-match patient joins the pool, given the priority rule
under Unpaired, he will have to wait for an arriving donor to be incompatible with all hard-to-match
patients remaining in the system. Given that the number of hard-to-match patients in the system
explodes, one may expect the conditional waiting time to be very long. However, we can use our
upper-bound result (Proposition C.1) which bounds the rate at which the number of hard-to-match
patients explodes to show that the number of easy-to-match patient remaining in the pool is small.
This is what we show in Section C.3.1 below. Once this is proved we prove that our upper-bound is
indeed tight in Section C.3.2.

C.3.1 An upper-bound on the number of easy-to-match patients

Lemma C.5. There is an integer k∗E such that, for any k and for any pH small enough,

πE{kE : kE ≥ k∗E + k} ≤ 3 + k

(1− ρ̂)2
ρ̂k

where ρ̂ < 1.

Proof of Lemma C.5. Fix an arbitrary kE ≥ 0 and let us consider the set S = N×{0, 1, ..., kE}.
Then, the GBE (Equation (C.4)) writes as:

∞∑
kH=0

π(kH , kE) [Q([kH , kE ] , [kH , kE + 1]) +Q([kH , kE ] , [kH − 1, kE + 1])]

=
∞∑

kH=0

π(kH , kE + 1) [Q([kH , kE + 1] , [kH , kE ]) +Q([kH , kE + 1] , [kH + 1, kE ])]

Using the expressions of the transition rates, this can be rewritten as:

∞∑
kH=0

π(kH , kE)n(1− λ)

[
(1− pE)kE+kH (1− pE)kE (1− pH)kH

+(1− pE)kE+kH [1− (1− pH)kH ]

]

=

∞∑
kH=0

π(kH , kE + 1)


nλ[1− (1− pH)kE+1+kH ](1− pH)kH [1− (1− pE)kE+1]

+n(1− λ)[1− (1− pE)kE+1+kH ](1− pH)kH [1− (1− pE)kE+1]

+µ(1− pH)kH [1− (1− pE)kE+1]

+nλ(1− pH)kE+1+kH (1− pH)kH [1− (1− pE)kE+1]
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This can be simplified to

∞∑
kH=0

π(kH , kE)
[
n(1− λ)(1− pE)kE+kH

]

≥
∞∑

kH=0

π(kH , kE + 1)

 nλ(1− pH)kH [1− (1− pE)kE+1]+

n(1− λ)[1− (1− pE)kE+1+kH ](1− pH)kH [1− (1− pE)kE+1]

+µ(1− pH)kH [1− (1− pE)kE+1]


Observing that the expression in brackets in the left hand side is maximized at kH = 0 and that the
expression in brackets in right hand-side may be bounded below by disregarding the last two terms,
we get that:

(1− λ)(1− pE)kEπE(kE) ≥
∞∑

kH=0

π(kH , kE + 1)λ(1− pH)kH [1− (1− pE)kE+1] (C.9)

where πE denotes the marginal of π on the number of easy-to-match patients in the pool, i.e.,
πE(kE) =

∑∞
kH=0 π(kH , kE).

In the sequel, for each kE and for any ε > 0, we define S(kE) := {kH : kH ≤ (1 + ε)k∗H +

ln(2)/pH + kE} as well as πS(kE)(kE) :=
∑

kH∈S(kE) π(kH , kE). We must have:

πE(kE)− πS(kE)(kE) =
∑

kH /∈S(kE)

π(kH , kE)

≤
∞∑

kE=0

∑
kH /∈S(kE)

π(kH , kE) =
∑

kH /∈S(kE)

πH(kH).

Hence, by Lemma C.4, for any kE ,

πE(kE)− πS(kE)(kE) ≤ ρln(2)/pH+kE

1− ρ
(C.10)

where ρ ∈ (0, 1). Note that for each kH ∈ S(kE), for pH small enough, we have

(1− pH)kH ≥ (1− pH)(1+ε)k
∗
H+ln(2)/pH+kE ≥ 1

3

(
1

1 + λ

)1+ε

(1− pH)kE

where the second inequality comes from the fact that as pH vanishes, (1− pH)ln(2)/pH converges to(
1
e

)ln(2)
= 1

2 >
1
3 .
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Given the above, let us rewrite Equation (C.9). The right-hand side can be lower-bounded by

∞∑
kH∈S(kE+1)

π(kH , kE + 1)λ(1− pH)kH [1− (1− pE)kE+1]

≥
∞∑

kH∈S(kE+1)

π(kH , kE + 1)λ
1

3

(
1

1 + λ

)1+ε

(1− pH)kE+1[1− (1− pE)kE+1]

Clearly, the left-hand side of Equation (C.9) can be rewritten as

(1− λ)(1− pE)kEπS(kE)(kE) + (1− λ)(1− pE)kE
(
πE(kE)− πS(kE)(kE)

)
.

Hence, Equation (C.9) can be rewritten as

(1− λ)(1− pE)kEπS(kE)(kE) + (1− λ)(1− pE)kE
(
πE(kE)− πS(kE)(kE)

)
≥ 1

3

(
1

1 + λ

)1+ε

λ(1− pH)kE+1[1− (1− pE)kE+1]πS(kE+1)(kE + 1)

Let us denote

ρ̄(kE) :=
(1− λ)(1− pE)kE

1
3

(
1

1+λ

)1+ε
λ(1− pH)kE+1[1− (1− pE)kE+1]

.

The above inequality can be written as

ρ̄(kE)πS(kE)(kE) + ρ̄(kE)
(
πE(kE)− πS(kE)(kE)

)
≥ πS(kE+1)(kE + 1).

Since

ρ̄(kE) ≤ 1− λ
λ
3

(
1

1+λ

)1+ε
pE(1− pH)

(
1− pE
1− pH

)kE
,

it must be that for any pH small enough, there is an integer k∗E large enough (which does not depend
on pH) so that supkE≥k∗E ρ̄(kE) =: ρ∗ < 1.C.5 Hence, from the definition of ρ∗ and from Equation
(C.10) we obtain

ρ∗πS(kE)(kE) + ρ∗
ρln(2)/pH+kE

1− ρ
≥ πS(kE+1)(kE + 1)

for any kE ≥ k∗E . Clearly, for pH small enough, ρ
ln(2)/pH

1−ρ < 1, and since ρ∗ < 1, we have

ρ∗πS(kE)(kE) + ρkE ≥ πS(kE+1)(kE + 1)

C.5k∗E is simply defined as the smallest integer kE ensuring 1−λ
λ
2 (

1
1+λ )

1+ε
pE(1−p)

(
1−pE
1−p

)kE
< 1 where p is an arbitrary

number in (0, pE). We then require that pH is smaller than p.
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holds for any kE ≥ k∗E . Now, setting ρ̂ := max(ρ∗, ρ) < 1, we obtain

ρ̂πS(kE)(kE) + ρ̂kE ≥ πS(kE+1)(kE + 1).

Now, proceeding inductively, we can rewrite for any kE ≥ k∗E

ρ̂iπS(k∗E)(k
∗
E) + iρ̂k

∗
E+i ≥ πS(k∗E+i)(k

∗
E + i) (C.11)

Now, we have

∞∑
kE≥k∗E+k

πE(kE) =
∞∑
i=k

πE(k∗E + i)

=
∞∑
i=k

πS(k∗E+i)(k
∗
E + i) +

∞∑
i=k

[πE(k∗E + i)− πS(k∗E+i)(k
∗
E + i)]

≤
∞∑
i=k

πS(k∗E+i)(k
∗
E + i) +

∞∑
i=k

ρ
ln(2)
pH

+k∗E+i

1− ρ

≤
∞∑
i=k

πS(k∗E+i)(k
∗
E + i) +

∞∑
i=k

ρ̂i

1− ρ̂

≤
∞∑
i=k

ρ̂iπS(k∗E)(k
∗
E) + ρ̂k

∗
E

∞∑
i=k

iρ̂i +
ρ̂k

(1− ρ̂)2

≤
∞∑
i=k

ρ̂i +

∞∑
i=k

iρ̂i +
ρ̂k

(1− ρ̂)2

≤ ρ̂k

1− ρ̂

(
1 +

1 + k

1− ρ̂
+

1

1− ρ̂

)
≤ ρ̂k

1− ρ̂
3 + k

1− ρ̂
(C.12)

where the first inequality uses (C.10). The second uses ρ̂ ≥ ρ. The third uses (C.11). The fourth
uses the fact that both πS(k∗E)(k

∗
E) and ρ̂ are smaller than one. The penultimate inequality uses the

following fact:
n∑
i=0

iρ̂i =
ρ̂− (n+ 1)ρ̂n+1 + nρ̂n+2

(1− ρ̂)2
(C.13)
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and the fact that

+∞∑
i=k

iρ̂i =

+∞∑
i=0

iρ̂i −
k−1∑
i=0

iρ̂i

=
ρ̂

(1− ρ̂)2
− ρ̂− kρ̂k + (k − 1)ρ̂k+1

(1− ρ̂)2

=
kρ̂k + ρ̂k+1 − kρ̂k+1

(1− ρ̂)2
(C.14)

≤ kρ̂k + ρ̂k

(1− ρ̂)2
(C.15)

where the second equality comes from equation (C.13) and ρ̂ ∈ (0, 1) is used for this equality as well
as for the inequality.

C.3.2 Completing of the lower-bound result for hard-to-match patients

Proposition C.6. Fix any δ > 0, πH
{
kH : kH

1/(− ln(1−pH)) ≤ ln [n(1 + λ) + µ]− ln (n+ µ)− δ
}
→ 0

as pH vanishes.

In the sequel, we fix k∗E as defined in Lemma C.5 and define S := {kE : kE ≤ k∗E + 1/
√
pH} and,

as before, πS(kH) =
∑

kE∈S π(kH , kE). We first prove the following lemma.

Lemma C.7. For any ε ∈ (0, 1) and any pH small enough, there exist constants ρ̂ ∈ (0, 1) such
that, for any integer z > 0:

πS(k∗H(1− ε)− z) ≤ ρ̃zπS(k∗H(1− ε)) + φ(pH)ρ̃
1− ρ̃z

1− ρ̃

where φ(pH) :=
(

3 + 1√
pH

)
ρ̂1/
√
pH

(1−ρ̂)2 .

Proof of Lemma C.7. Let us recall that using the GBE we obtained

∞∑
kE=0

π(kH , kE)nλ(1− pH)kE+kH (1− pH)kH

=
∑
kE∈S

π(kH + 1, kE)

[
nλ
[
1− (1− pH)kE+kH+1

] [
1− (1− pH)kH+1

]
+(µ+ n(1− λ))

[
1− (1− pH)kH+1

] ]

+
∑
kE /∈S

π(kH + 1, kE)

[
nλ
[
1− (1− pH)kE+kH+1

] [
1− (1− pH)kH+1

]
+(µ+ n(1− λ))

[
1− (1− pH)kH+1

] ]
.

Note that for pH small enough, (1 − pH)kE ≥ (1 − pH)k
∗
E .c
√
pH with c ∈ (0, 1) whenever kE ∈ S =
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{kE : kE ≤ k∗E + 1/
√
pH}.C.6 This observation allows us to lower-bound the left-hand side of the

above displayed equation. Thus, by upper-bounding the right-hand side as well (simply using the
facts that for kE ∈ S, kE ≤ k∗E + 1/

√
pH and 1− (1− pH)kE+kH+1 ≤ 1), we get

πS(kH)
[
nλ(1− pH)k

∗
E .c
√
pH (1− pH)2kH

]
≤ πS(kH + 1)

[
nλ
[
1− (1− pH)k

∗
E+1/

√
pH+kH+1

] [
1− (1− pH)kH+1

]
+((1− λ)n+ µ)

[
1− (1− pH)kH+1

] ]

+(πH(kH + 1)− πS(kH + 1))

[
nλ
[
1− (1− pH)k

∗
E+1/

√
pH+kH+1

] [
1− (1− pH)kH+1

]
+((1− λ)n+ µ)

[
1− (1− pH)kH+1

] ]
.

In the sequel we fix ε ∈ (0, 1) and consider kH ≤ k∗H(1 − ε). We will be using the following two
inequalities which hold for pH small enough : k∗E+1/

√
pH +kH +1 ≤ k∗H and kH +1 ≤ k∗H . Since the

second inequality holds if the first one holds, we just provide the argument for the first one. Since k∗H
goes to [ln [n(1 + λ) + µ]− ln (n+ µ)]/ pH as pH vanishes, we must have εk∗H ≥ k∗E + 1/

√
pH + 1 for

pH small enough (recall by Lemma C.5 that k∗E is a constant which does not depend on pH). Since
we assumed that kH ≤ k∗H(1−ε), we must have k∗E +1/

√
pH +kH +1 ≤ k∗E +1/

√
pH +k∗H(1−ε)+1

which is thus smaller than k∗H for pH small enough, as claimed. These two inequalities allow us to
further bound the right-hand side of the above displayed equation:

πS(kH)
[
nλ(1− pH)k

∗
E .c
√
pH (1− pH)2kH

]
≤ πS(kH + 1)

[
nλ
[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]]
+(πH(kH + 1)− πS(kH + 1))

[
nλ
[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]]
.

Then, using the fact that kH ≤ k∗H(1 − ε), we can lower-bound the left-hand side of the above
equation to get

πS(kH)
[
nλ(1− pH)k

∗
E .c
√
pH (1− pH)2k

∗
H(1−ε)

]
≤ πS(kH + 1)

[
nλ
[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]]
+(πH(kH + 1)− πS(kH + 1))

[
nλ
[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]]
.

C.6Simply note that, for any kE ∈ S,

(1− pH)kE ≥ (1− pH)k
∗
E (1− pH)1/

√
pH

= (1− pH)k
∗
E

(
(1− pH)1/pH

)√pH
.

Since (1 − pH)1/pH converges from below to 1/e, we can ensure that for pH small enough, (1 − pH)kE ≥ (1 −
pH)k

∗
E
(
0.9
e

)√pH .
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This may be rewritten as:

πS(kH) ≤ ρ̃1(pH)πS(kH + 1) + ρ̃1(pH)(πH(kH + 1)− πS(kH + 1)) (C.16)

with

ρ̃1(pH) :=

(
(1− pH)2εk

∗
H

(1− pH)k
∗
Ec
√
pH

)
nλ
[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]
nλ(1− pH)2k

∗
H

.

Now, we claim that, for pH small enough, ρ̃1(pH) ≤ ρ̃1 where ρ̃1 < 1 does not depend on pH . Indeed,

ρ̃1(pH) =

(
(1− pH)2εk

∗
H

(1− pH)k
∗
Ec
√
pH

)
nλ
[
1− (1− pH)k

∗
H

]2
+ (n(1− λ) + µ)

[
1− (1− pH)k

∗
H

]
nλ(1− pH)2k

∗
H

=
(1− pH)2εk

∗
H

(1− pH)k
∗
Ec
√
pH

=
1

(1− pH)k
∗
E .c
√
pH

(
n+ µ

n(1 + λ) + µ

)2ε

where the penultimate equality holds by Equation (C.5) while the last one holds by Equation (C.6).
Now, 1

/(
(1− pH)k

∗
Ec
√
pH
)
converges from above to 1 as pH vanishes (recall by Lemma C.5 that

k∗E is a constant which does not depend on pH), thus, the above term converges from above to(
n+µ

n(1+λ)+µ

)2ε
< 1 as pH vanishes. So, for pH small enough, ρ̃1(pH) ≤ ρ̃1 where ρ̃1 < 1 does not

depend on pH .
Thus, from inequality (C.16) we get that for pH small enough,

πS(kH) ≤ ρ̃1πS(kH + 1) + ρ̃1(πH(kH + 1)− πS(kH + 1))

Now, by Lemma C.5, for any kH ,

πH(kH + 1)− πS(kH + 1) =
∑
kE /∈S

π(kH + 1, kE)

≤
∞∑

kH=0

∑
kE /∈S

π(kH , kE)

≤
3 + 1/

√
pH

1− ρ̂

(
ρ̂1/
√
pH

1− ρ̂

)

with ρ̂ ∈ (0, 1). Hence, for kH ≤ k∗H(1− ε), we obtain

πS(kH) ≤ ρ̃1

[
πS(kH + 1) +

3 + 1/
√
pH

1− ρ̂

(
ρ̂1/
√
pH

1− ρ̂

)]
≤ ρ̃ [πS(kH + 1) + φ(pH)]

where ρ̃ := max(ρ̂, ρ̃1) and

φ(pH) :=
3 + 1/

√
pH

1− ρ̃
ρ̃1/
√
pH

1− ρ̃
.
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An inductive argument yields

πS(k∗H(1− ε)− i) ≤ ρ̃iπS(k∗H(1− ε)) + φ(pH)ρ̃
1− ρ̃i

1− ρ̃
. (C.17)

Completion of the proof of Proposition C.6. We fix δ > 0 and claim that

πH

{
kH :

kH
1/(− ln(1− pH))

≤ ln [n(1 + λ) + µ]− ln (n+ µ)− δ
}
→ 0

which is equivalent to showing that

πH

{
kH : kH ≤

1

pH
[ln [n(1 + λ) + µ]− ln (n+ µ)]− 1

pH
δ

}
→ 0.

Pick pH and ε small enough so that

1

pH
[ln [n(1 + λ) + µ]− ln (n+ µ)]− 1

pH
δ ≤ k∗H(1− ε)− 1/

√
pH .

Clearly, for our purpose, it is enough to show that

πH{kH ≤ k∗H(1− ε)− 1/
√
pH} → 0
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as pH vanishes. In order to see this, observe that

πH{kH ≤ k∗H(1− ε)− 1/
√
pH}

=

k∗H(1−ε)∑
i=1/

√
pH

πH(k∗H(1− ε)− i)

=

k∗H(1−ε)∑
i=1/

√
pH

[πH(k∗H(1− ε)− i)− πS(k∗H(1− ε)− i)] +

k∗H(1−ε)∑
i=1/

√
pH

πS(k∗H(1− ε)− i)

≤
∞∑

kH=0

∑
kE /∈S

π(kH , kE) +

k∗H(1−ε)∑
i=1/

√
pH

πS(k∗H(1− ε)− i)

≤ φ(pH) +

k∗H(1−ε)∑
i=1/

√
pH

πS(k∗H(1− ε)− i)

≤ φ(pH) +

k∗H(1−ε)∑
i=1/

√
pH

ρ̃iπS(k∗H(1− ε)) +

k∗H(1−ε)∑
i=0

φ(pH)ρ̃
1− ρ̃i

1− ρ̃

≤ φ(pH) +
∞∑

i=1/
√
pH

ρ̃i +

k∗H(1−ε)∑
i=0

φ(pH)ρ̃
1− ρ̃i

1− ρ̃

≤ φ(pH) +
ρ̃1/
√
pH

1− ρ̃
+ k∗H(1− ε)φ(pH)

ρ̃

1− ρ̃
→ 0

where the second inequality comes from Lemma C.5 and the third from the Lemma C.7. In order

to prove the convergence result let us first note that, as pH vanishes, φ(pH)→ ρ̃
1√
pH

(1−ρ̃)2√pH and, since

k∗H is of order 1/pH , k∗Hφ(pH) → cρ̃
1√
pH

(1−ρ̃)2pH
√
pH

= cρ̃
1√
pH

(1−ρ̃)2(√pH)3
, with c a positive constant. In order

to prove that those two terms tend to zero, it is sufficient to prove that, for any α ∈ (0, 1) and any
finite integer n ≥ 1, we have xnαx → 0 as x → +∞. We prove this fact by repeatedly applying
L’Hospital’s Rule n times:

lim
x→+∞

xn(
1
α

)x = lim
x→+∞

∏n−1
i=0 (n− i)[

ln
(
1
α

)]n ( 1
α

)x = 0 (C.18)

since the product is a finite number and α ∈ (0, 1).

C.4 Completion of the proof of Proposition 4.2

Here, we complete the proof of Proposition 4.2 by providing the expressions of pHWH(Unpaired)

and pHWE(Unpaired) when pH vanishes.

Waiting time of hard-to-match patients. Given pH , let us denote by KH(pH) the random
variable corresponding to the number of hard-to-match patients at the invariant distribution πH .
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Proposition C.1 and C.6 imply that, as pH vanishes, KH(pH)pH converges in probability to constant
ln [n(1 + λ) + µ] − ln (n+ µ). One can show that {KH(pH)pH} is uniformly integrable, i.e., for a
given δ > 0, there exists M < ∞ large enough such that E [KH(pH)pH1{KH(pH)pH ≥M}] ≤ δ

for all the random variables in our collection {KH(pH)} where 1{KH(pH)pH ≥ M} stands for the
indicator function equal to 1 if and only if KH(pH)pH ≥M . This implies (see for instance Williams,
1991) that

lim
pH→0

E [KH(pH)pH ] = ln [n(1 + λ) + µ]− ln (n+ µ) . (C.19)

To see that the collection {KH(pH)pH} is uniformly integrable, fix δ, ε > 0 and let M :=

k∗H(1 + ε)pH + z ≤ [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε) + z where z ≥ 1 is an integer yet to be
specified.C.7 Note that

E [KH(pH)pH1{KH(pH)pH ≥M}] = pH

∞∑
i=z/pH

πH (k∗H(1 + ε) + i) [k∗H(1 + ε) + i]

≤ pH

∞∑
i=z

πH (k∗H(1 + ε) + i) [k∗H(1 + ε) + i]

≤
∞∑
i=z

πH (k∗H(1 + ε) + i) [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε)

+pH

∞∑
i=z

πH (k∗H(1 + ε) + i) i

≤ [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε)
∞∑
i=z

ρiπH (k∗H(1 + ε))

+pH

∞∑
i=z

ρiπH (k∗H(1 + ε)) i

≤ [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε)
∞∑
i=z

ρi +
∞∑
i=z

ρii

≤ [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε)
ρz

1− ρ
+
zρz + ρz

(1− ρ)2

where the third inequality uses (C.8) while the last inequality uses (C.15). Since ρ ∈ (0, 1), the
above term is smaller than δ when z is large enough and so when M is large enough.

Hence, as stated in (C.19) we obtain

lim
pH→0

E [pHKH(pH)] = ln [n(1 + λ) + µ]− ln (n+ µ) .

C.7For the inequality: k∗H(1 + ε)pH + z ≤ [ln [n(1 + λ) + µ]− ln (n+ µ)] (1 + ε) + z we simply used the fact that
pH ≤ − ln(1− pH) together with the definition of k∗H .
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Now, by Little’s law we get that:

lim
pH→0

pHWH(Unpaired) = lim
pH→0

pH
E [KH(pH)]

λ.n

= lim
pH→0

E [pHKH(pH)]

λ.n
=

ln [n(1 + λ) + µ]− ln (n+ µ)

λ.n
.

Waiting time of easy-to-match patients. First, we prove that, at the invariant distribution,
as pH vanishes, the number of easy-to-match patients is concentrated around the constant k∗E as
defined in Lemma C.5. This indeed comes from that lemma and parallels Proposition C.1 but now
for easy-to-match patients.

Proposition C.8. Fix any δ > 0,

πE

{
kE :

kE
1/(− ln(1− pH))

≥
k∗E

1/(− ln(1− pH))
+ δ

}
→ 0

as pH vanishes.

Proof. Fix any δ > 0 and let pH > 0 be small enough so that √pH ≤ δ. We know that

πE

{
kE :

kE
1/(− ln(1− pH))

≥
k∗E

1/(− ln(1− pH))
+ δ

}
≤ πE

{
kE :

kE
1/(− ln(1− pH))

≥
k∗E

1/(− ln(1− pH))
+
√
pH

}
= πE

{
kE : kE ≥ k∗E +

√
pH

− ln(1− pH)

}

≤
3 +

√
pH

− ln(1−pH)

(1− ρ̂)2
ρ̂

√
pH

− ln(1−pH ) → 0 as pH vanishes

where the first inequality is ensured by our choice of pH while the last inequality is by Lemma C.5 and
the convergence result holds since ρ̂ ∈ (0, 1) (again by Lemma C.5) and since − ln(1− pH)/pH goes
to 1 as pH vanishes and so

√
pH

− ln(1−pH) explodes as pH vanishes.

Now, given pH , let us denote by KE(pH) the random variable corresponding to the number of
easy-to-match patients at the invariant distribution πE . As for the case of hard-to-match patients,
we want to show that the collection {KE(pH)pH} is uniformly integrable. To see this, fix δ > 0 and
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let M := k∗EpH + z where z ≥ 1 is an integer yet to be specified. Then, note that:

E [KE(pH)pH1{KE(pH)pH ≥M}] = pH

∞∑
i=z/pH

πE (k∗E + i) [k∗E + i]

≤ pH

∞∑
i=z

πE (k∗E + i) [k∗E + i]

≤ k∗E

∞∑
i=z

πE (k∗E + i) +
∞∑
i=z

iπE (k∗E + i)

≤ k∗E

(
ρ̂z

1− ρ̂

)
3 + z

1− ρ̂
+
∞∑
i=z

iπE (k∗E + i) (C.20)

where the last inequality comes from (C.12). Moreover, we have:

∞∑
i=z

iπE (k∗E + i) =

∞∑
i=z

iπS(k∗E+i)(k
∗
E + i) +

∞∑
i=z

i[πE(k∗E + i)− πS(k∗E+i)(k
∗
E + i)]

≤
∞∑
i=z

iπS(k∗E+i)(k
∗
E + i) +

∞∑
i=z

i
ρ

ln(2)
pH

+k∗E+i

1− ρ

≤
∞∑
i=z

iπS(k∗E+i)(k
∗
E + i) + ρ̂k

∗
E

∞∑
i=z

iρ̂i

1− ρ̂

≤
∞∑
i=z

iρ̂iπS(k∗E)(k
∗
E) + ρ̂k

∗
E

∞∑
i=z

i2ρ̂i + ρ̂k
∗
E

∞∑
i=z

iρ̂i

1− ρ̂

≤
∞∑
i=z

iρ̂i +

∞∑
i=z

i2ρ̂i +

∞∑
i=z

iρ̂i

1− ρ̂

≤ 2

1− ρ̂

∞∑
i=z

iρ̂i +
∞∑
i=z

i2ρ̂i

≤ 2(1 + z)ρ̂z

(1− ρ̂)3
+

∞∑
i=z

i2ρ̂i (C.21)

where the first inequality uses (C.10). The second uses ρ ≤ ρ̂ ≤ 1. The third uses (C.11). The
fourth and the fifth use the fact that πS(k∗E)(k

∗
E) and ρ̂ are smaller than one. The last inequality
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comes from (C.15). Finally, we have:

∞∑
i=z

i2ρ̂i = ρ̂
∞∑
i=z

i2ρ̂i−1

= ρ̂
d

dρ̂

[ ∞∑
i=z

iρ̂i

]

= ρ̂
d

dρ̂

[
zρ̂z + (1− z)ρ̂z+1

(1− ρ̂)2

]
= ρ̂

[
(1− ρ̂)

(
z2ρ̂z−1 + (1− z)(1 + z)ρ̂z

)
+ 2

(
zρ̂z + (1− z)ρ̂z+1

)
(1− ρ̂)3

]

≤ ρ̂

[
z2ρ̂z−1 + (1 + 3z)ρ̂z + 2ρ̂z+1

(1− ρ̂)3

]
≤ ρ̂

[
z2ρ̂z−1 + (1 + 3z)ρ̂z−1 + 2ρ̂z−1

(1− ρ̂)3

]
=

(3 + 3z + z2)ρ̂z

(1− ρ̂)3
(C.22)

where the third equality comes from (C.14) and the last inequality uses the fact that ρ̂ is smaller
than one.

Combining (C.20), (C.21) and (C.22) we obtain:

E [KE(pH)pH1{KE(pH)pH ≥M}] ≤
[

(3 + z)k∗E
(1− ρ̂)2

+
(5 + 5z + z2)

(1− ρ̂)3

]
ρ̂z.

Since ρ̂ ∈ (0, 1), the above term is smaller than δ when z is large enough and so when M is large
enough. Thus, the collection {KE(pH)pH} is uniformly integrable.

Again, this together with Proposition C.8 imply (e.g., Williams, 1991) that

lim
pH→0

E [pHKE(pH)] ≤ lim
pH→0

pHk
∗
E = 0

Then, by Little’s law we get that:

lim
pH→0

pHWE(Unpaired) = lim
pH→0

pH
E [KE(pH)]

(1− λ).n
= 0.

C.5 Existence of Invariant Distribution

We now prove that the Markov chain induced by the Unpaired with DDL algorithm has a unique
invariant distribution. The very same argument can be used to prove that the Markov chain induced
by Pairwise with DDL has a unique distribution as well.

Proposition C.9. The transition matrix Q has a unique invariant distribution.

Proof. As in Ashlagi et al. (2019) we use the following lemma from Meyn and Tweedie (1993) which
is especially useful in proving our proposition.
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Lemma C.10 (Meyn and Tweedie (1993)). Suppose that Xt is an irreducible continuous time
Markov chain with the transition matrix Q over states S = N × N. If there exist a nonnegative
function V on S, a function w ≥ 1 on S, a finite set C ⊂ S, and constants c > 0 and b ∈ R such
that, for all i = (kE , kH) ∈ S: ∑

j∈S
Q(i, j)V (j) ≤ −cw(i) + b.IC(i),

where IC denotes the indicator function of the set C, then the Markov chain X is ergodic.

It is clear that our Markov chain is irreducible, so our proof will focus on finding a suitable set
C, functions V and w, and constants c, and b.

Recall that for a continuous Markov chain,
∑

j 6=iQ(i, j) = −Q(i, i). Hence, we must have∑
j∈S

Q(i, j)V (j) =
∑
j 6=i

Q(i, j)(V (j)− V (i)).

Now, let V (kE , kH) = kE + kH . For any state i = (kE , kH) ∈ S, we have:∑
j 6=i

Q(i, j)(V (j)− V (i))

= Q([kH , kE ], [kH+1, kE ])−Q([kH , kE ], [kH−1, kE ])+Q([kH , kE ], [kH , kE+1])−Q([kH , kE ], [kH , kE−1])

Let λH = λn and λE = (1− λ)n. Then the above is equal to:

λH(1− pH)kH+kE (1− pE)kE (1− pH)kH − λH(1− (1− pH)kH+kE )(1− (1− pH)kH )

−λE(1−(1−pE)kH+kE )(1−(1−pH)kH )−µ(1−(1−pH)kH )+λE(1−pE)kH+kE (1−pH)kH (1−pE)kE

−λH(1−(1−pH)kH+kE )(1−pH)kH (1−(1−pE)kE )−λE(1−(1−pE)kH+kE )(1−pH)kH (1−(1−pE)kE )

−µ(1− (1− pH)kH )(1− (1− pE)kE )

= −n+ n(1− pH)kH (1− pE)kE + λE(1− pE)kH+kE + λH(1− pH)kH+kE

−2µ+ 2µ(1− pH)kH + µ(1− pE)kE − µ(1− pH)kH (1− pE)kE

Let b = 2(n+3µ), w = n+3µ, and c = 1
3 . Now takeM such that (1−pH)M ≤ 1

3 and (1−pE)M ≤ 1
3 ,

and set C = {(kE , kH)|kE ≤M,kH ≤M}. Note that C is finite.
For any i = (kE , kH) 6∈ C, we must have:

∑
j 6=i

Q(i, j)(V (j)− V (i)) ≤ −n+
1

3
n+

1

3
λE +

1

3
λH − 2µ+

2

3
µ+

1

3
µ = −n+ 3µ

3
= −cw(i) + b.IC(i)

69



For any i = (kE , kH) ∈ C, we have:

∑
j 6=i

Q(i, j)(V (j)−V (i)) ≤ −n+n+λE+λH−2µ+2µ+µ = n+µ ≤ −n+ 3µ

3
+2(n+3µ) = −cw(i)+b.IC(i)

Thus, the Markov chain is ergodic, which means that it has a unique invariant distribution.
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D Unpaired with DDL versus Optimal with DDL

In this section, we prove the following result which generalizes Theorem 2.8 to the case where µ ≥ 0.
First, we define the average waiting time achieved by the Optimal algorithm, W(Optimal), as

inf W(ALG)

where the infimum is taken over all matching algorithms. Similar to the definition in Section 2
(without DDL), a matching algorithm selects a matching Mt in the compatibility graph Gt (which
now potentially includes a deceased donors among the nodes).D.8 For matching algorithms, we
impose that each time a patient is matched to a deceased donor, one donor exits the system with
the interpretation that he gives his kidney right away to a compatible patient waiting on the national
waiting list for deceased donors. (Recall footnote 46 for the motivation of this modeling choice)

Theorem D.1. Fix a matching algorithm ALG. We must have

lim
pH→0

sup
W(Unpaired)

W(ALG)
≤ 1

λ

(
2 +

µ

n

)
ln

(
1 + λ+ µ/n

1 + µ/n

)
≤ 2

ln(1 + λ)

λ
.

Let us denote the size of the pool by k̃.D.9 In the sequel, W̃(ALG) is the random variable
describing the average waiting time of an arriving patient. Note that a necessary condition for a
patient to be matched is that (i) he is compatible with a donor in the pool upon arriving or (ii) he
is compatible with a donor in the future or he is compatible with a DD kidney in the future. In the
former case, his waiting time is simply 0 while in the latter case, by the Poisson thinning property,
the expected waiting time is lower bounded by 1

npT+µpT
for a patient of type T ∈ {E,H}.

E
[
W̃(ALG)

∣∣∣k̃ = k
]
≥ λ(1− pH)k

1

npH + µpH
+ (1− λ)(1− pE)k

1

npE + µpE

≥ λ(1− kpH)
1

pH(n+ µ)
+ (1− λ)(1− kpE)

1

pE (n+ µ)

=
λ

pH(n+ µ)
+

1− λ
pE (n+ µ)

− k 1

n+ µ
.

Thus, using the fact that, by Little’s law, W(ALG) =
E[k̃]
n , we have

W(ALG) = E
[
E
[
W̃(ALG)

∣∣∣k̃ = k
]]

≥ λ

pH(n+ µ)
+

1− λ
pE (n+ µ)

− E
[
k̃
] 1

n+ µ

=
λ

pH(n+ µ)
+

1− λ
pE (n+ µ)

− n

n+ µ
W(ALG).

D.8We maintain the restriction to algorithms inducing stochastic processes having an invariant distribution.
D.9Note that, by assumption, the number of patients remaining in the pool equals the number of donors remaining.

This is the case because we impose the constraint that, each time a patient receive from a deceased donor, a living
donor is removed from the system.
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This gives us

W(ALG) ≥ λ

(2n+ µ) pH
+

1− λ
(2n+ µ) pE

. (D.23)

Now, we are in a position to prove the proposition. Indeed,

lim
pH→0

sup
W(Unpaired)

W(ALG)
=

limpH→0 pHW(Unpaired)

limpH→0 inf pHW(ALG)

≤ (ln [n(1 + λ) + µ]− ln (n+ µ)) /n

λ/ (2n+ µ)

=
1

λ

(
2 +

µ

n

)
ln

(
1 + λ+ µ/n

1 + µ/n

)
≤ 2

ln(1 + λ)

λ
.

where the first inequality comes from Propositon 2.6 together with Equation (D.23). To prove the
last inequality, let us define f(x) = 1

λ(2 + x) ln
(
1+λ+x
1+x

)
and remark that:

f ′(x) =
1

λ

[
ln

(
1 +

λ

1 + x

)
− λ 1

1 + x

2 + x

1 + λ+ x

]
≤ 1

λ

[
ln

(
1 +

λ

1 + x

)
− λ 1

1 + x

]
which is negative since, for all y ∈ (0, 1), ln(1 + y) < y. Hence, f(µn) is maximized when there is no
deceased donors (µ = 0).
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E Results for Pairwise with DDL

In this section, we prove the following proposition (corresponding to Proposition 4.4 in the main
text) which generalizes Ashlagi et al. (2019) to the case where one may have an inflow of deceased
donors in the system.

Proposition E.1. Under the Pairwise algorithm, the waiting time of easy-to-match patients, WE(Paired),
satisfies

lim
pH→0

pHWE(Paired) = 0

while the average waiting time of hard-to-match patient, WH(Paired) satisfies

• If µ > n(2λ− 1):
lim
pH→0

pHWH(Paired) =
c

λ · n
.

where c solvesE.10

n(1− λ)e−cpE + µe−c = n(1− 2λ) + µ.

• If µ < n(2λ− 1):

lim
pH→0

p2HWH(Paired) =
ln (2λn)− ln (n+ µ)

λ · n
.

E.1 Preliminaries

We denote by Q the transition rate matrix over states N× N. We will mainly focus on the following
transition rates:

Q([kH , kE ], [kH + 1, kE ]) = nλ(1− p2H)kH (1− pEpH)kE

Q([kH , kE ], [kH − 1, kE ]) = n
{
λ
(

1− (1− p2H)kH
)

+ (1− λ)
(

1− (1− pEpH)kH
)}

+µ[1− (1− pH)kH ]

Q([kH , kE ], [kH , kE + 1]) = n(1− λ)(1− pEpH)kH (1− p2E)kE

Q([kH , kE ], [kH , kE − 1]) = n
{
λ(1− p2H)kH

(
1− (1− pHpE)kE

)
+(1− λ)(1− pEpH)kH

(
1− (1− p2E)kE

)}
+ µ(1− pH)kH

(
1− (1− pE)kE

)
Let also first recall that the Global Balance Equations (GBE) are a set of equations that char-

acterize the invariant distribution of a Markov chain, when such a distribution exists. The above
stochastic process is a Markov chain which has an invariant distribution as proved in Appendix C.5.
In the sequel, we let π be this invariant distribution. The GBE can be stated as follows: for any
subset S ⊂ N× N, we must have:∑

j∈S
π(j)

∑
i/∈S

Q(j, i) =
∑
i/∈S

π(i)
∑
j∈S

Q(i, j) (E.24)

E.10It is easily checked that c ∈
[
ln (n(1− λ) + µ)− ln (n(1− 2λ) + µ) , 1

pE
(ln (n(1− λ) + µ)− ln (n(1− 2λ) + µ))

]
.
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Let us define the following function f : R+ → R:

f(k) := nλ(1− p2H)k − n
{
λ
(

1− (1− p2H)k
)

+ (1− λ)
(

1− (1− pEpH)k
)}
− µ[1− (1− pH)k]

Observe that f(k) is decreasing with f(0) = nλ and limk→+∞ f(k) = −(n+ µ) such that there is a
unique positive value k∗H such that f(k∗H) = 0. We show the following intermediary result:

Lemma E.2. As pH vanishes, we have that

• if µ > n(2λ− 1),
−k∗H ln(1− pH)→ c

where c solves
n(1− λ)e−cpE + µe−c = n(1− 2λ) + µ.

• if µ < n(2λ− 1),
−k∗H ln(1− p2H)→ ln(2nλ)− ln(n+ µ).

Proof. For each pH , we fix a solution k∗H(pH) of the equation f(k) = 0 (we make explicit the
dependence of k∗H to pH). We claim that, when µ > n(2λ− 1), (1− p2H)k

∗
H(pH) → 1. Indeed, assume

not, i.e., (1 − p2H)k
∗
H(pH) 9 1. Since the sequence (1 − p2H)k

∗
H(pH) lies in the compact set [0, 1],

there must exist a subsequence of (1 − p2H)k
∗
H(pH) which converges to a positive number c < 1.E.11

From now on, we focus on this subsequence, we have (1−p2H)k
∗
H(pH) =

(
(1− p2H)1/p

2
H

)k∗H(pH)p2H → c

where c ∈ [0, 1). Hence, k∗H(pH)p2H does not go to 0 as pH vanishes. Put differently, k∗H(pH)

grows at the order at least 1/p2H , in particular, k∗H(pH)pH → ∞. In such a case, (1− pH)k
∗
H(pH) =(

(1− pH)1/pH
)k∗H(pH)pH → 0 and, similarly, (1− pEpH)k

∗
H(pH) → 0. Hence

f(k∗H(pH))→ nλc− nλ(1− c)− (1− λ)n− µ < n(2λ− 1)− µ ≤ 0,

such that k∗H(pH) cannot satisfy f(k∗H(pH)) = 0 for a pH small enough, which yields a contradiction
with the definition of k∗H(pH). We conclude that (1 − p2H)k

∗
H(pH) → 1. Thus, in this case, we must

have that, as pH vanishes,

n(1− λ)(1− pEpH)k
∗
H(pH) + µ(1− pH)k

∗
H(pH) = n(1− 2λ)− µ.

From this, it is easy to see that −k∗H(pH) ln(1− pH) must converge to a constant c as pH vanishes.
Thus, as pH vanishes, the above equation can be rewritten as

n(1− λ)(1− pEpH)
1

pEpH
pEc + µ(1− pH)

1
pH

c
= n(1− 2λ)− µ

E.11Recall that for a given sequence if each possible converging subsequence extracted from that sequence converges
to the same limit, say 1, then the original sequence also converges to that 1.
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which, as pH vanishes, yields

n(1− λ)e−pEc + µe−c = n(1− 2λ)− µ.

We conclude that −k∗H(pH) ln(1 − pH) converges to c as pH vanishes where c solves the above
equation, as claimed.

Let us now consider the case µ < n(2λ − 1). Again, we fix a solution k∗H(pH) of the equation
f(k) = 0 and we show that (1 − p2H)k

∗
H(pH) converge to a constant c ∈ (0, 1). Assume not, there

must exist a subsequence of (1 − p2)k∗H(pH) which converges to 1. Focusing on this subsequence we
must have

f(k∗H(pH)) → (1− λ)n(1− pEpH)k
∗
H(pH) + µ(1− pH)k

∗
H(pH) + n(2λ− 1)− µ

> (1− λ)n(1− pEpH)k
∗
H(pH) + µ(1− pH)k

∗
H(pH) ≥ 0

where the first inequality arises since µ < n(2λ− 1). The above inequality contradicts the definition
of k∗H(pH) so that we must have (1 − p2H)k

∗
H(pH) → c ∈ (0, 1). It implies that k∗H(pH) grows at

the order at least 1/p2H , such that (1 − pH)k
∗
H(pH) → 0 and (1 − pEpH)k

∗
H(pH) → 0. Hence, as pH

vanishes, k∗H(pH) must satisfies:

2nλ(1− p2H)k
∗
H(pH) = n+ µ

Hence, (1 − p2H)k
∗
H(pH) → n+µ

2nλ . This proves that, as pH vanishes,−k∗H(pH) ln(1 − p2H) converges
to ln(2nλ)− ln(n+ µ), as claimed.

E.2 Upper-bound result

In the sequel, we first prove the following result providing an upper-bound on the number of hard-
to-match patients.

Proposition E.3. Assume µ > n(2λ− 1) : for any δ > 0,

πH

{
kH :

kH
1/(− ln(1− pEpH))

≥ c+ δ

}
→ 0

as pH vanishes. Assume µ < n(2λ− 1) : for any δ > 0,

πH

{
kH :

kH
1/(− ln(1− p2H))

≥ ln(2nλ)− ln(n+ µ) + δ

}
→ 0

as pH vanishes.

In order to show this, we need to prove the following lemma.

Lemma E.4. For any ε > 0, there exists a constant ρ ∈ (0, 1) such that, for any pH > 0 and for
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any integer kH ≥ k∗H(1 + ε)
πH(kH + 1)

πH(kH)
≤ ρ.

Proof of Lemma E.4. The GBE (Equation (E.24)) gives us

∞∑
kE=0

π(kH , kE)Q([kH , kE ] , [kH + 1, kE ]) =
∞∑

kE=0

π(kH + 1, kE)Q([kH + 1, kE ] , [kH , kE ])

Using the expressions of the transition rates, this can be rewritten as:

∞∑
kE=0

π(kH , kE)
[
nλ(1− p2H)kH (1− pEpH)kE

]

=

∞∑
kE=0

π(kH + 1, kE)

[
n
{
λ
(
1− (1− p2H)kH+1

)
+ (1− λ)

(
1− (1− pEpH)kH+1

)}
+µ[1− (1− pH)kH+1]

]
.

Observing that the term in brackets in left-hand side of the above equality is maximized at kE = 0,
we get:

∑∞
kE=0 π(kH , kE)

[
nλ(1− p2H)kH

]
≥

∑∞
kE=0 π(kH + 1, kE)

[
n
{
λ
(
1− (1− p2H)kH+1

)
+ (1− λ)

(
1− (1− pEpH)kH+1

)}
+µ[1− (1− pH)kH+1]

]
.

It implies that

πH(kH)

πH(kH + 1)
≥
n
{
λ
(
1− (1− p2H)kH+1

)
+ (1− λ)

(
1− (1− pEpH)kH+1

)}
+ µ[1− (1− pH)kH+1]

nλ(1− p2H)kH
.

(E.25)
where we recall that πH(kH) =

∑∞
kE=0 π(kH , kE).

Fix any ε > 0 and an arbitrary kH ≥ k∗H(1 + ε). From the inequality above we deduce:

πH(kH + 1)

πH(kH)
≤

nλ(1− p2H)kH

n
{
λ
(
1− (1− p2H)kH+1

)
+ (1− λ) (1− (1− pEpH)kH+1)

}
+ µ[1− (1− pH)kH+1]

≤
nλ(1− p2H)kH

n
{
λ
(
1− (1− p2H)kH

)
+ (1− λ) (1− (1− pEpH)kH )

}
+ µ[1− (1− pH)kH ]

≤
nλ(1− p2H)k

∗
H(1+ε)

n
{
λ
(
1− (1− p2H)k

∗
H(1+ε)

)
+ (1− λ)

(
1− (1− pEpH)k

∗
H(1+ε)

)}
+ µ[1− (1− pH)k

∗
H(1+ε)]

≤
nλ(1− p2H)k

∗
H

n
{
λ
(
1− (1− p2H)k

∗
H(1+ε)

)
+ (1− λ)

(
1− (1− pEpH)k

∗
H(1+ε)

)}
+ µ[1− (1− pH)k

∗
H(1+ε)]

As pH vanishes, both the denominator and the numerator converge to a constant. We denote the
ratio of these constant by ρ. Clearly, by definition of k∗H , at ε = 0, this ratio is equal to 1. Hence,
given that ε > 0, we must have ρ < 1. Hence we obtain a positive constant ρ < 1 independent of
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pH , such that for all kH ≥ (1 + ε)k∗H : πH(kH+1)
πH(kH) ≤ ρ, as claimed.

Using the result stated in Lemma E.4 we can show the following:

Lemma E.5. For any ε > 0, there exists a constant ρ ∈ (0, 1) such that, for any pH > 0 and for
any integer z > 0:

πH {kH : kH ≥ k∗H(1 + ε) + z} ≤ ρz

1− ρ
.

Proof of Lemma E.5. The proof is the same as for Unpaired with DDL (see Lemma C.4).

Completion of the proof of Proposition C.1. Assume that µ < n(2λ− 1). Fix any δ > 0. We
want to show that

πH

{
kH :

kH
1/(− ln(1− p2H))

≥ ln (2nλ)− ln (n+ µ) + δ

}
→ 0

as pH vanishes. Fix ε > 0 and pH > 0 small enough so that

[ln (2nλ)− ln (n+ µ)] (1 + 2ε) + pH ≤ ln (2nλ)− ln (n+ µ) + δ.

Hence, we obtain

πH

{
kH :

kH
1/(− ln(1− p2H))

≥ ln (2nλ)− ln (n+ µ) + δ

}
≤ πH

{
kH :

kH
1/(− ln(1− p2H))

≥ [ln (2nλ)− ln (n+ µ)] (1 + 2ε) + pH

}
≤ πH

{
kH : kH ≥ k∗H(1 + ε) +

pH
− ln(1− p2H)

}

≤ ρ

pH

− ln(1−p2H)

1− ρ
→ 0

where the first inequality is ensured by our choice of ε and pH . The second inequality uses the fact
that [ln (2nλ)− ln (n+ µ)] (1 + 2ε) ≥ − ln(1− p2H))k∗H(1 + ε) for pH small enough since, by Lemma
E.2, − ln(1 − p2H))k∗H → ln (2nλ) − ln (n+ µ) as pH vanishes. In turn, the last inequality follows
from Lemma C.4 and the convergence result holds since ρ ∈ (0, 1) (still by Lemma E.5) and since

pH
− ln(1−p2H)

explodes as pH vanishes.
Assume now that µ > n(2λ− 1) and fix any δ > 0. We want to show that

πH

{
kH :

kH
1/(− ln(1− pH))

≥ c+ δ

}
→ 0

as pH vanishes. Fix ε > 0 and pH > 0 small enough so that

c(1 + 2ε) +
√
pH ≤ c+ δ.
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Hence, we obtain

πH

{
kH :

kH
1/(− ln(1− pH))

≥ c+ δ

}
≤ πH

{
kH :

kH
1/(− ln(1− pH))

≥ c(1 + 2ε) +
√
pH

}
≤ πH

{
kH : kH ≥ k∗H(1 + ε) +

√
pH

− ln(1− pH)

}

≤ ρ

√
pH

− ln(1−pH )

1− ρ
→ 0

where the first inequality is ensured by our choice of ε and pH . The second inequality uses the fact
that c(1+2ε) ≥ −k∗H(1+ε) ln(1−pH) for pH small enough since, by Lemma E.2, −k∗H ln(1−pH)→ c

as pH vanishes. In turn, the last inequality follows from Lemma E.5 and the convergence result holds
since ρ ∈ (0, 1) (still by Lemma E.5) and since

√
pH

− ln(1−pH) explodes as pH vanishes.

E.3 Lower-bound result

Before providing a lower-bound on the number of hard-to-match patients (Section E.3.2) we need
to establish an upper-bound on the number of easy-to-match patients (Section C.3.1).

E.3.1 An upper-bound on the number of easy-to-match patients

Lemma E.6. For any pH small enough,

πE

{
kE : kE ≥

1
√
pH

+ k

}
≤ 3 + k

(1− ρ̂)2
ρ̂k

where ρ̂ < 1.E.12

Proof of Lemma E.6. Fix an arbitrary kE ≥ 0 and let us consider the set S = N×{0, 1, ..., kE}.
Then, the GBE (Equation (E.24)) writes as:

∞∑
kH=0

π(kH , kE)Q([kH , kE ] , [kH , kE + 1]) =
∞∑

kH=0

π(kH , kE + 1)Q([kH , kE + 1] , [kH , kE ]) (E.26)

E.12While we do not formally prove it, one can show that when µ ≥ n(2λ− 1), there is a constant k∗E such that, for
any k and for any pH small enough,

πE {kE : kE ≥ k∗E + k} ≤ 3 + k

(1− ρ̂)2 ρ̂
k

where ρ̂ < 1, very much as Lemma C.5 that we obtained for the Unpaired algorithm.
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Using the expressions of the transition rates, this can be rewritten as:

∞∑
kH=0

π(kH , kE)n(1− λ)(1− pEpH)kH (1− p2E)kE

=
∞∑

kH=0

π(kH , kE + 1)

 nλ(1− p2H)kH
(
1− (1− pHpE)kE+1

)
+n(1− λ)(1− pEpH)kH

(
1− (1− p2E)kE+1

)
+µ(1− pH)kH

(
1− (1− pE)kE+1

)


Observing that the expression in brackets in the left hand side is maximized at kH = 0 and that the
expression in brackets in right hand-side may be bounded below by disregarding the third term, we
get that:

∞∑
kH=0

π(kH , kE)(1− λ)(1− p2E)kE

≥
∞∑

kH=0

π(kH , kE + 1)
{
λ(1− p2H)kH

(
1− (1− pHpE)kE+1

)
+ (1− λ)(1− pEpH)kH

(
1− (1− p2E)kE+1

)}
≥

∞∑
kH=0

π(kH , kE + 1)
{
λ(1− p2H)kH

(
1− (1− pHpE)kE

)
+ (1− λ)(1− pEpH)kH

(
1− (1− p2E)kE

)}
Let us disregard the second term of the right hand side of the above inequality such that:

πE(kE)(1− λ)(1− p2E)kE ≥
∞∑

kH=0

π(kH , kE + 1)λ(1− p2H)kH
(

1− (1− pHpE)kE
)

(E.27)

where πE denotes the marginal of π on the number of easy-to-match patients in the pool, i.e.,
πE(kE) =

∑∞
kH=0 π(kH , kE).

In the sequel, for each kE and for any ε > 0, we define S(kE) := {kH : kH ≤ (1 + ε)k∗H + kE} as
well as πS(kE)(kE) :=

∑
kH∈S(kE) π(kH , kE). We must have:

πE(kE)− πS(kE)(kE) =
∑

kH /∈S(kE)

π(kH , kE)

≤
∞∑

kE=0

∑
kH /∈S(kE)

π(kH , kE) =
∑

kH /∈S(kE)

πH(kH).

Hence, by Lemma E.5, for any kE ,

πE(kE)− πS(kE)(kE) ≤ ρkE

1− ρ
(E.28)

where ρ ∈ (0, 1). Note that for pH small enough and for each kH ∈ S(kE), we have

(1− p2H)kH ≥ (1− p2H)(1+ε)k
∗
H+kE ≥ d1+ε(1− p2H)kE
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where d is a constant smaller than 1. The second inequality comes from Lemma E.2 stating that as
pH vanishes, (1 − p2H)k

∗
H converges to a constant strictly smaller than 1 when µ < n(2λ − 1) and

converges to 1 when µ ≥ n(2λ− 1).
Thus, we can rewrite Equation (E.27) as

(1− λ)(1− p2E)kEπS(kE)(kE) + (1− λ)(1− p2E)kE
(
πE(kE)− πS(kE)(kE)

)
≥ λd1+ε(1− p2H)kE+1[1− (1− pHpE)kE ]πS(kE+1)(kE + 1)

where we used the fact that πE(kE + 1) ≥ πS(kE+1)(kE + 1).
Let us denote

ρ̄(kE) :=
1− λ

λd1+ε(1− p2H)

(
1− p2E
1− p2H

)kE 1

1− (1− pHpE)kE
.

The above inequality can be written as

ρ̄(kE)πS(kE)(kE) + ρ̄(kE)
(
πE(kE)− πS(kE)(kE)

)
≥ πS(kE+1)(kE + 1).

Now, observing that ρ̄(kE) is decreasing in kE , we get that for kE ≥ 1√
pH

:

ρ̄(kE) ≤ 1− λ
λd1+ε(1− p2H)

(
1− p2E
1− p2H

) 1√
pH 1

1− (1− pHpE)
1√
pH

. (E.29)

We can show that the above upper bound goes to 0 as pH vanishes. To see this, it is enough to show
that (

1− p2E
1− p2H

) 1√
pH 1

1− (1− pHpE)
1√
pH

→ 0

as pH vanishes. This is equivalent to showing that

lim
x→0

α
1
x

1− βx
= lim

x→0

α
1
x

x2

(
log(α)

βx log(β)

)
= 0

with α := (1 − p2E) < 1 and β := exp(−pE) < 1. The equivalence comes from the fact that

(1 − pHpE)
1√
pH =

(
(1− pHpE)

1
pH

)√pH
→ (exp(−pE))

√
pH as pH vanished and the first equality

comes from the L’Hospital’s Rule. As the term in brackets tends to the positive constant log(α)
log(β)

when x vanishes, for our purpose, we need to show that α
1
x

x2
→ 0 as x → 0. Note that this is

equivalent to showing that x2αx → 0 as x→∞ which is true as shown in equation (C.18).
Hence, the RHS of inequality (E.29) vanishes as pH tends to 0. Thus, we can fix a constant

ρ∗ < 1−ρ (< 1) such that, for pH small enough, ρ̄(kE) < ρ∗ for any kE ≥ 1√
pH

Thus, from Equation
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(E.28), for any pH small enough and for any kE ≥ 1√
pH

, we must have

ρ∗πS(kE)(kE) + ρ∗
ρkE

1− ρ
≥ πS(kE+1)(kE + 1)

Clearly, since ρ∗
1−ρ < 1, we have that

ρ∗πS(kE)(kE) + ρkE ≥ πS(kE+1)(kE + 1)

holds for any pH small enough and for any kE ≥ 1√
pH

. Now, setting ρ̂ := max(ρ∗, ρ) < 1, we obtain

ρ̂πS(kE)(kE) + ρ̂kE ≥ πS(kE+1)(kE + 1).

Now, proceeding inductively, for any pH small enough, we must have

ρ̂iπS(k∗E(pH))(k
∗
E(pH)) + iρ̂k

∗
E(pH)+i ≥ πS(k∗E(pH)+i)(k

∗
E(pH) + i) (E.30)

where k∗E(pH) := d 1√
pH
e. Now, we have that for any pH small enough:

∞∑
kE≥k∗E(pH)+k

πE(kE) =

∞∑
i=k

πE(k∗E(pH) + i)

=
∞∑
i=k

πS(k∗E(pH)+i)(k
∗
E(pH) + i) +

∞∑
i=k

[πE(k∗E(pH) + i)− πS(k∗E(pH)+i)(k
∗
E(pH) + i)]

≤
∞∑
i=k

πS(k∗E(pH)+i)(k
∗
E(pH) + i) +

∞∑
i=k

ρk
∗
E(pH)+i

1− ρ

≤
∞∑
i=k

πS(k∗E(pH)+i)(k
∗
E(pH) + i) +

∞∑
i=k

ρ̂i

1− ρ̂

≤
∞∑
i=k

ρ̂iπS(k∗E(pH))(k
∗
E(pH)) + ρ̂k

∗
E(pH)

∞∑
i=k

iρ̂i +
ρ̂k

(1− ρ̂)2

≤
∞∑
i=k

ρ̂i +
∞∑
i=k

iρ̂i +
ρ̂k

(1− ρ̂)2

≤ ρ̂k

1− ρ̂

(
1 +

1 + k

1− ρ̂
+

1

1− ρ̂

)
≤ ρ̂k

1− ρ̂
3 + k

1− ρ̂
(E.31)

where the first inequality uses (E.28). The second uses ρ̂ ≥ ρ. The third uses (E.30). The fourth
uses the fact that both πS(k∗E(pH))(k

∗
E(pH)) and ρ̂ are smaller than one. The penultimate inequality

uses the following fact:
n∑
i=0

iρ̂i =
ρ̂− (n+ 1)ρ̂n+1 + nρ̂n+2

(1− ρ̂)2
(E.32)
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and the fact that

+∞∑
i=k

iρ̂i =

+∞∑
i=0

iρ̂i −
k−1∑
i=0

iρ̂i

=
ρ̂

(1− ρ̂)2
− ρ̂− kρ̂k + (k − 1)ρ̂k+1

(1− ρ̂)2

=
kρ̂k + ρ̂k+1 − kρ̂k+1

(1− ρ̂)2
(E.33)

≤ kρ̂k + ρ̂k

(1− ρ̂)2
(E.34)

where the second equality comes from equation (E.32) and ρ̂ ∈ (0, 1) is used for this equality as well
as for the inequality.

E.3.2 Completing of the lower-bound result for hard-to-match patients

Proposition E.7. Assume µ > n(2λ− 1) : for any δ > 0,

πH

{
kH :

kH
1/(− ln(1− pEpH))

≥ c− δ
}
→ 0

as pH vanishes. Assume µ < n(2λ− 1) : for any δ > 0,

πH

{
kH :

kH
1/(− ln(1− p2H))

≥ ln(2nλ)− ln(n+ µ)− δ
}
→ 0

as pH vanishes.

We set k∗E := α
pH

where α > 0 is yet to be fixed. In the sequel we define S := {kE : kE ≤
k∗E + 1/

√
pH} and, as before, πS(kH) =

∑
kE∈S π(kH , kE). We first prove the following lemma.

Lemma E.8. For any ε ∈ (0, 1) and any pH small enough, there exists ρ̃ ∈ (0, 1) such that, for any
integer z > 0:

πS(k∗H(1− ε)− z) ≤ ρ̃zπS(k∗H(1− ε)) + φ(pH)ρ̃
1− ρ̃z

1− ρ̃

where φ(pH) :=
(

3 + 1√
pH

)
ρ̃1/
√
pH

(1−ρ̃)2 .

Proof of Lemma E.8. Let us recall that using the GBE we obtained

∞∑
kE=0

π(kH , kE)
[
nλ(1− p2H)kH (1− pEpH)kE

]

=
∑
kE∈S

π(kH + 1, kE)

[
n
{
λ
(
1− (1− p2H)kH+1

)
+ (1− λ)

(
1− (1− pEpH)kH+1

)}
+µ[1− (1− pH)kH+1]

]

+
∑
kE /∈S

π(kH + 1, kE)

[
n
{
λ
(
1− (1− p2H)kH+1

)
+ (1− λ)

(
1− (1− pEpH)kH+1

)}
+µ[1− (1− pH)kH+1]

]
.
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Note that for pH small enough, (1 − pH)kE ≥ (1 − pH)k
∗
E .c
√
pH with c ∈ (0, 1) whenever kE ∈ S =

{kE : kE ≤ k∗E + 1/
√
pH}.E.13 This observation allows us to lower-bound the left-hand side of the

above displayed equation. Thus, by upper-bounding the right-hand side as well, we get

πS(kH)
[
nλ(1− pH)k

∗
E .c
√
pH (1− p2H)kH

]
≤ πS(kH + 1)

[
n
{
λ
(
1− (1− p2H)kH+1

)
+ (1− λ)

(
1− (1− pEpH)kH+1

)}
+µ[1− (1− pH)kH+1]

]
+(πH(kH + 1)− πS(kH + 1)) [n+ µ] .

In the sequel we fix ε ∈ (0, 1) and consider kH ≤ k∗H(1 − ε). We note two obvious facts. First,
kH ≤ k∗H(1− ε

2). Second, kH + 1 ≤ k∗H(1− ε
2) for pH small enough. To see why the last inequality

holds, notice that k∗H(1 − ε
2) = k∗H(1 − ε) + k∗H

ε
2 . Since we know that kH ≤ k∗H(1 − ε) and that

1 ≤ k∗H
ε
2 for pH small enough (recall that, by Lemma E.2, k∗H explodes as pH vanishes), we get the

aforementioned inequality. These two simple inequalities allow us to further bound the right-hand
side and the left-hand side of the above displayed equation to get:

πS(kH)
[
nλ(1− pH)k

∗
E .c
√
pH (1− p2H)k

∗
H(1−ε/2)

]
≤ πS(kH + 1)

[
n
{
λ
(
1− (1− p2H)k

∗
H(1−ε/2))+ (1− λ)

(
1− (1− pEpH)k

∗
H(1−ε/2))}

+µ[1− (1− pH)k
∗
H(1−ε/2)]

]

+(πH(kH + 1)− πS(kH + 1))

[
n
{
λ
(
1− (1− p2H)k

∗
H(1−ε/2))+ (1− λ)

(
1− (1− pEpH)k

∗
H(1−ε/2))}

+µ[1− (1− pH)k
∗
H(1−ε/2)]

]
.

This may be rewritten as:

πS(kH) ≤ ρ̃1(pH)πS(kH + 1) + ρ̃1(pH)(πH(kH + 1)− πS(kH + 1)) (E.35)

with

ρ̃1(pH) :=

(
1

(1− pH)k
∗
Ec
√
pH

) n
{
λ
(
1− (1− p2H)k

∗
H(1−ε/2))+ (1− λ)

(
1− (1− pEpH)k

∗
H(1−ε/2))}

+µ[1− (1− pH)k
∗
H(1−ε/2)]

nλ(1− p2H)k
∗
H(1−ε/2) .

Now, we claim that, for pH small enough, ρ̃1(pH) ≤ ρ̃1 where ρ̃1 < 1 does not depend on pH . Indeed,
1
/(

(1− pH)k
∗
Ec
√
pH
)
converges from above to 1 as pH vanishes (recall that k∗E = 1√

pH
). Further the

second term in the expression of ρ̃1(pH) is equal to 1 when ε = 0. Thus, it is strictly smaller than
E.13Simply note that, for any kE ∈ S,

(1− pH)kE ≥ (1− pH)k
∗
E (1− pH)1/

√
pH

= (1− pH)k
∗
E

(
(1− pH)1/pH

)√pH
.

Since (1 − pH)1/pH converges from below to 1/e, we can ensure that for pH small enough, (1 − pH)kE ≥ (1 −
pH)k

∗
E
(
0.9
e

)√pH .
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1 when ε > 0. We get that ρ̃1(pH) is smaller than ρ̃1 < 1 for pH small enough where ρ̃1 does not
depend on pH .

Thus, from inequality (E.35) we get that for pH small enough,

πS(kH) ≤ ρ̃1πS(kH + 1) + ρ̃1(πH(kH + 1)− πS(kH + 1))

Now, by Lemma E.6, for any kH ,

πH(kH + 1)− πS(kH + 1) =
∑
kE /∈S

π(kH + 1, kE)

≤
∞∑

kH=0

∑
kE /∈S

π(kH , kE)

≤
3 + 1/

√
pH

1− ρ̂

(
ρ̂1/
√
pH

1− ρ̂

)

with ρ̂ ∈ (0, 1). Hence, for kH ≤ k∗H(1− ε), we obtain

πS(kH) ≤ ρ̃1

[
πS(kH + 1) +

3 + 1/
√
pH

1− ρ̂

(
ρ̂1/
√
pH

1− ρ̂

)]
≤ ρ̃ [πS(kH + 1) + φ(pH)]

with ρ̃ := max(ρ̂, ρ̃1) and

φ(pH) :=
3 + 1/

√
pH

1− ρ̃

(
ρ̃1/
√
pH

1− ρ̃

)
.

An inductive argument yields

πS(k∗H(1− ε)− i) ≤ ρ̃iπS(k∗H(1− ε)) + φ(pH)ρ̃
1− ρ̃i

1− ρ̃
. (E.36)

Completion of the proof of Proposition C.6. We provide a proof only for the case µ < n(2λ−
1). The proof for the other case is the same. We fix δ > 0 and claim that

πH

{
kH :

kH
1/(− ln(1− p2H))

≤ ln (2nλ)− ln (n+ µ)− δ
}
→ 0

which is equivalent to showing that

πH

{
kH : kH ≤

1

p2H
[ln (2nλ)− ln (n+ µ)]− 1

p2H
δ

}
→ 0.
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Pick pH and ε small enough so that

1

p2H
[ln (2nλ)− ln (n+ µ)]− 1

p2H
δ ≤ k∗H(1− ε)− 1/

√
pH .

Clearly, for our purpose, it is enough to show that

πH{kH ≤ k∗H(1− ε)− 1/
√
pH} → 0

as pH vanishes. In order to see this, observe that

πH{kH ≤ k∗H(1− ε)− 1/
√
pH}

=

k∗H(1−ε)∑
i=1/

√
pH

πH(k∗H(1− ε)− i)

=

k∗H(1−ε)∑
i=1/

√
pH

[πH(k∗H(1− ε)− i)− πS(k∗H(1− ε)− i)] +

k∗H(1−ε)∑
i=1/

√
pH

πS(k∗H(1− ε)− i)

≤
∞∑

kH=0

∑
kE /∈S

π(kH , kE) +

k∗H(1−ε)∑
i=1/

√
pH

πS(k∗H(1− ε)− i)

≤ φ(pH) +

k∗H(1−ε)∑
i=1/

√
pH

πS(k∗H(1− ε)− i)

≤ φ(pH) +

k∗H(1−ε)∑
i=1/

√
pH

ρ̃iπS(k∗H(1− ε)) +

k∗H(1−ε)∑
i=0

φ(pH)ρ̃
1− ρ̃i

1− ρ̃

≤ φ(pH) +
∞∑

i=1/
√
pH

ρ̃i +

k∗H(1−ε)∑
i=0

φ(pH)ρ̃
1− ρ̃i

1− ρ̃

≤ φ(pH) +
ρ̃1/
√
pH

1− ρ̃
+ k∗H(1− ε)φ(pH)

ρ̃

1− ρ̃
→ 0

where the second inequality comes from Lemma E.6, the third from the Lemma E.8. In order to

prove the convergence result let us first note that, as pH vanishes, φ(pH) → ρ̃
1√
pH

(1−ρ̃)2√pH and, since
k∗H is of order 1/pH when µ ≥ n(2λ− 1) and of order 1/p2H when µ < n(2λ− 1), k∗Hφ(pH) converges

either to cρ̃
1√
pH

(1−ρ̃)2pH
√
pH

= cρ̃
1√
pH

(1−ρ̃)2(√pH)3
or c′ρ̃

1√
pH

(1−ρ̃)2p2H
√
pH

= c′ρ̃
1√
pH

(1−ρ̃)2(√pH)5
, with c and c′ some positive

constants. In both cases all those terms converge to zero if for any α ∈ (0, 1) and any finite integer
n ≥ 1, we have xnαx → 0 as x→ +∞. We know that it is true by equation (C.18).

Following the same arguments as in Section C.4, we can provide the expressions of pHWH(Pairwise)

and pHWE(Pairwise) when pH vanishes.
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F Comparative statics for Pairwise with DDL

In this section, we analyze how the asymptotic waiting time of hard to match patients evolves with
n when λ is large and µ > n(2λ−1). Let us denote by Ω(n;λ) this asymptotic (normalized) waiting
time (i.e., pHWH as pH vanishes). We know from Proposition E.1 that

Ω(n;λ) =
c(n;λ)

λn

with c(n;λ) solution of the equation

n(1− λ)e−cpE + µe−c = n(1− 2λ) + µ. (F.37)

Hence, we must have

Ω′(n;λ) =
c′(n;λ)n− c(n;λ)

λn2
.

We want to show the following.

Proposition F.1. There exists a λ̄ ∈ (1/2, 1) such that, for all λ > λ̄, Ω′(n;λ) > 0 for every
n < µ/(2λ− 1).

Proof. Note that the function Ω′(n;λ) is well defined for n ∈ (0, µ/(2λ− 1)) and λ ∈ (0, 1]. Let us
extend the domain of Ω′(n;λ) to (n, λ) such that n ∈ [0, µ/(2λ− 1)] and λ ∈ (0, 1] by defining

Ω′(
µ

2λ− 1
;λ) := lim

n→ µ
2λ−1

Ω′(n;λ) =∞

and
Ω′(0;λ) := lim

n→0
Ω′(n;λ) =

λ− 2(1− λ)pE
2µ2

for all λ ∈ (0, 1]. Where the first limit can be directly deduced from (F.37) and the second limit
uses Lemma F.2 below. Clearly, Ω′(n;λ) is continuous in both arguments on the extended domain.

Fix an arbitrary small ε > 0.F.14 We consider the restriction of Ω′(n;λ) to the set of (n, λ) s.t.
n ∈ [0, µ/(2λ − 1)) and λ ∈ [1/2 + ε, 1]. Clearly, this restriction is continuous in both arguments
over its domain. Now define V : [1/2 + ε, 1]→ R as follows. For all λ ∈ [1/2 + ε, 1] :

V (λ) := inf
n∈[0,µ/(2λ−1)]

Ω′(n;λ).

We first show that V is continuous at λ = 1. To show this, let us first remark that V (λ) < 1/µ2.
Indeed, for all λ ∈ [1/2 + ε, 1]

V (λ) ≤ Ω′(0;λ) =
λ(1 + 2pE)− 2pE

2µ2
≤ 1 + 2pE − 2pE

2µ2
<

1

µ2

F.14So that 1/2 + ε < 1. This ensures that [1/2 + ε, 1] 6= ∅.
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where the first inequality is by definition of V (λ), the equality is by definition of Ω′(0;λ) and the
second inequality is because Ω′(0;λ) is increasing in λ and λ ∈ [1/2 + ε, 1].

Now, define Ω̂′(n;λ) := min{Ω′(n;λ), 1/µ2} and V̂ (λ) := infn∈[0,µ/(2λ−1)] Ω̂
′(n;λ). Observe that

Ω̂′(n;λ)takes it values in R and is continuous on its domain and, in addition, the correspondence
λ ⇒ [0, µ/(2λ − 1)] is compact-valued, non-empty valued and continuous, by Berge’s Maximum
Theorem, V̂ is continuous on its domain. Now, it is clear that V̂ (λ) exactly corresponds to V (λ).
Hence, V is also continuous on its, domain V is continuous at λ = 1.

To complete the proof, it remains to show that V (1) > 0. To do so we show that Ω′(n; 1) is
positive for all n. We get from (F.37), that c(n; 1) = ln

(
µ

µ−n

)
such that Ω(n; 1) = lnµ−ln(µ−n)

n and

Ω′(n; 1) =
1

n2

[
n/µ

1− n/µ
− ln

(
1

1− n/µ

)]
which is positive since n < µ.

To sum-up, V (λ) is continuous and V (1) > 0. Hence, there is λ̄ > 0 such that for all λ > λ̄,
Ω′(n;λ) > 0 for all n ∈ [0, µ/(2λ− 1)).

Below, we prove Lemma F.2 referred to in the proof of Propostion F.1 above.

Lemma F.2. limn→0 Ω′(n;λ) = λ−2(1−λ)pE
2µ2

.

Proof. Denoting

f(n) := c′(n;λ)n− c(n;λ)

g(n) := λn2

we have
lim
n→0

Ω′(n;λ) = lim
n→0

f(n)

g(n)

Now, as n vanishes, we have g(n)→ 0 and c(n;λ)→ 0. Moreover, the differentiation of (F.37) with
respect to c and n yields

c′(n;λ) =
(1− λ)e−cpE + 2λ− 1

pEn(1− λ)e−cpE + µe−c
(F.38)

such that c′(n)→ λ/µ and f(n)→ 0. Hence we can apply l’Hospital’s rule and we get that:

lim
n→0

Ω′(n;λ) = lim
n→0

f ′(n)

g′(n)
= lim

n→0

c′′(n)

2λ
.

Using equation (F.38), we get that:

c′′(n;λ) =
u′(n)v(n)− v′(n)u(n)

v(n)2

87



with

u(n) = (1− λ)e−c(n;λ)pE + 2λ− 1 −→
n→0

λ

v(n) = pEn(1− λ)e−c(n;λ)pE + µe−c(n) −→
n→0

µ

u′(n) = −(1− λ)pEc
′−c(n;λ)pE −→

n→0

−λ(1− λ)pE
µ

v′(n) = −n(1− λ)p2Ec
′(n;λ)e−c(n;λ)pE + pE(1− λ)e−c(n;λ)pE − µc′(n;λ)e−c(n;λ) −→

n→0
pE(1− λ)− λ

Hence we have
lim
n→0

c′′(n;λ) =
λ[λ− 2(1− λ)pE ]

µ2
.

Finally we get that

lim
n→0

Ω′(n;λ) =
λ− 2(1− λ)pE

2µ2
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G The Omniscient Algorithm in Simulation Analyses

This appendix explains how to formulate the Omniscient algorithm in the simulations in Sections 3
and 4.2. As we shall see, the formulation depends on whether it uses DDL kidneys or not and
whether incompatible pairs can exogenously exit. The objective of the algorithm is to minimize the
sum of the (censored) waiting times of all patients, regardless of transplant status.

We need some additional notations. Let P = P` ∪ Pd where P` is the set of patients in an
incompatible pair and Pd is the set of “dummy patients” attached to each DDL kidney. A generic
patient will be indexed by j as the patient in pair j. Let D = D` ∪ Dd denote the set of all kidneys
to be donated, where D` is the set of living donor kidneys and Dd is the set of DDL kidneys. By
definition, |D`| = |P`| := n` and |Dd| = |Pd|. A generic donor, living or deceased, will be indexed
by i. When i = j, donor i and patient j are in the same incompatible pair. We will also use d to
denote a generic deceased donor. Below, we sometimes refer to a kidney in D as a donor, although
a deceased donor may donate two kidneys.

For any donor kidney or patient k, we denote by a(k) and e(k) the arrival and the exit dates of
k, respectively. For any two dates t and t′, t < t′ means that date t is prior to date t′, and t′ − t
is the number of days between any two dates (which can be negative if date t′ is after date t). For
d ∈ Dd, a(d) is the date of arrival of the DDL kidney and the exit date is e(d) = a(d) since a DDL
kidney is only available on its arrival day.

The waiting time are calculated as follows. Let T iij be the number of days donor i waits if she
gives to patient j and T jij be the number of days patient j waits if he receives from donor i. Note
that T jij = 0 if donor i arrives before patient j. For a patient or donor k, let T ek = e(k)−a(k) be the
number of days between its arrival and exit dates. Under the assumption of no exit, T ek = T − a(k).

Finally, let G be the compatibility matrix between donors and patients so that Gij = 1 if donor
i ∈ D is compatible with patient j ∈ P. A dummy patient associated with a DDL kidney is
compatible with every donor. We also define L = |P| × |D`|.

Let Xij ∈ {0, 1}, which is equal to 1 if donor i donates a kidney to patient j. The Omniscient
algorithm, solves the following problem:G.15

min
(Xij)ij∈{0,1}L

∑
i∈D,j∈P

Xij × (Tij − T ej ) (G.39)

s.t.

∀i ∈ D, j ∈ P :(Cij) Xij ≤ Gij × 1{e(j)≥a(i)} × 1{(i∈D`)∨(e(i)≥a(j))}

∀j ∈ P :(F pj )
∑
i∈D

Xij ≤ 1

∀i ∈ D :(F di )
∑
j∈P

Xij ≤ 1

G.15The total waiting time of all patients is
∑

i∈D,j∈P
XijTij +

∑
j∈P

(1−
∑
i∈D

Xij)T
e
j =

∑
i∈D,j∈P

Xij × (Tij − T ej ).
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∀i ∈ D` :(Ei)
∑

j∈P:e(j)<e(i)

Xij ≤
∑
i′∈D

Xi′i

∀d ∈ Dd :(DDd)
∑
i∈D`:

a(i)≤a(d)

∑
j∈Pd:

a(j)≤a(d)

Xij =
∑
d′∈Dd:

a(d′)≤a(d)

∑
j∈P`:

a(j)≤a(d)

Xd′j

The constraints are:

• Cij : Compatibility constraints. It takes into account that if a DDL kidney i ∈ Dd gives to a
patient j ∈ P, then this patient must arrive before the departure of the DDL kidney.

• F pj : Feasibility constraints for patients. Each patient can receive at most one kidney.

• F di : Feasibility constraints for donors. Each donor kidney can be donated to at most one
patient.

• Ei: Exit constraints. On the exit date, a living donor leaves with her patient but stays if her
patient has received a kidney. Hence, if patient j does not receive a kidney, his associated
donor i = j leaves with patient j and thus cannot donate to any patient who arrives after their
exit date. When we impose the no-exit assumption, this constraint is never binding.

• DDd: DDL kidney constraints. We need to ensure that, at all the arrival dates of deceased
kidneys, the number of living donors donating to patients on the DDL equals the number of
DDL kidneys that have been used by the Omniscient.

When DDL kidneys are not used in the Omniscient algorithm, the constraints in DDd are ignored.
When pairs do not exit exogenously and stay until the end of the time period, constraints Ei are
ignored.

We are interested in solving the Omniscient algorithm for different market sizes. The above
problem is stated as an Integer Linear Programming (ILP). It is well known that ILP can be
computationally challenging. Fortunately, in most of the simulations, the algorithm can use a
polynomial-time solver. Below, we discuss each of the cases that we consider.

Implementation without exit or DDL kidneys. In Section 3, we consider the baseline version
of the Omniscient algorithm that assumes no exit and does not use DDL kidneys. In this case, we
formulate the Omniscient algorithm as finding a minimum-weight perfect matching.

The formulation goes as follows. We build a weighted bipartite graph. Let the set of nodes be
N := P` ∪D`. To construct the set of edges E, we consider the complete graph such that (j, i) ∈ E
∀j ∈ P` and ∀i ∈ D`. For each edge (j, i), define the weight wji as follows:

wji =

{
T jij if Gij = 1 and a(j) ≤ a(i)

T ej otherwise

That is, the weight of an edge between patient j and donor i is equal to the waiting time of j on the
date when i donates to j if they are compatible and if their arrival dates make it feasible to realize
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a transplant. Recall that there is no exit here. If i and j are not compatible, the weight is equal to
the maximum waiting time of patient j, i.e., T ej or T − a(j). The tuple (E,N,w) defines a weighted
bipartite graph.

A matching M is a set of edges M ⊂ E such that any two distinct edges (j, i) ∈ M and
(j′, i′) ∈M ⇒ i 6= i′ and j 6= j′. We say that a node is matched under M if it belongs to an edge of
M . Note that donor i and patient j being matched here does not imply that there are a donation
and a transplant because i and j can be incompatible. A matchingM is a perfect matching if all the
nodes in N are matched under M . Because our graph is complete, there exists a perfect matching.
Given a perfect matchingM , we let wM :=

∑
(j,i)∈M

wji be the weight of matchingM . Note that, for a

perfect matching M , given the definition of the weights, wM corresponds to the overall waiting time
of the patients. If (j, i) ∈ M and wji = T ej , we interpret the edge as “patient j is not transplanted
and donor i does not donate.” If (j, i) ∈M and wji = T jij , we interpret the edge as “donor j donates
to patient i.”

We say that M∗ is a minimal weight perfect matching if it is a perfect matching and if there
exists no other perfect matchingM with wM < wM∗ . Hence, a minimal weight perfect matching can
identify the transplants that minimize the overall average waiting time of patients. The problem
of finding a minimal weight perfect matching in a bipartite graph is standard and can be easily
implemented with a polynomial algorithm that solves the linear assignment problem (Martello and
Toth, 1987).

Implementation with DDL and no exit. This implementation is to obtain some of the results
of the Omniscient algorithm in Section 4.2. For this case, we formulate the Omniscient algorithm
as solving a minimum-cost flow problem.

Recall that Unpaired with DDL uses DDL kidneys under the constraint that if we use a DDL kid-
ney, we need to immediately give back a living donor kidney to the DDL, which are constraints DDd

in optimization problem (G.39). In the same optimization problem, without pair exits, there are no
constraints Ei.

We implement the Omniscient algorithm as follows. We start with building a weighted di-
graph.G.16 Let Ddd be a set of dummy deceased donors which duplicates each deceased donor. For
d ∈ Dd, we denote dc his copy in Ddd. The set of nodes is N := P` ∪ Dd ∪ Ddd ∪ D` ∪ {s, t} where
s and t will be called “the source” and “the sink,” respectively. The construction of the edges, E,
and the weights, w, has several step. We first build edges between all patients in P` and all living
donors in D`, with their weights being the same as in the implementation without exists or DDL
kidneys. Then, for each patient j ∈ P` and deceased donor d ∈ Dd, we add an edge (j, d) (i) if they
are compatible, i.e., Gdj = 1 and (ii) if patient j arrives before donor d is available, i.e. a(j) ≤ a(d).
The corresponding weight is the time that patient j waits in case of a donation from donor d, i.e.,
wjd = T jdj . Each deceased donor d ∈ Dd is connected to his copy in Ddd by an edge (d, dd) ∈ E.G.17

G.16Contrary to the previous implementation of the Omniscient without DDL, the current graph is directed but not
bipartite.
G.17As we shall see, these edges are used to guarantee that each deceased donor will only be used once.
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For each dummy deceased donor dc ∈ Ddd and living donor i, add an edge (dc, i) if living donor i
arrives before deceased donor d, of whom dc is the copy, is available, i.e., a(i) ≤ a(d). These edges
represent the constraint that “living donor i gives back to a patient on the DDL whenever deceased
donor d is used.” Lastly, ∀j ∈ P`, add an edge (s, j) with wsj = 0 and ∀i ∈ D`, add an edge (i, t)

with wit = 0.
In the above weighted directed graph, the weights are interpreted as costs. In addition, each

edge (a, b) ∈ E is associated with a unit capacity cab = 1.
In sum, the source points to all patients at a zero cost. Patients are connected with living and

deceased donors at costs equal to their waiting time if there is a transplantation or at costs being
their maximum waiting time if there is no transplantation. Via their copies, all deceased donors
point to their respective available living donors at no cost, and all living donors point to the sink at
no cost.

A flow f is defined over the edges E where fab ≥ 0 is the flow associated with edge (a, b) ∈ E.
A flow is feasible if it respects the capacity of each edge, i.e., fab ≤ 1 ∀(a, b) ∈ E. A flow is integral
if fab is an integer for each (a, b) ∈ E.G.18 For each a ∈ N\{s, t}, a flow must be balanced, i.e.∑
b∈N :(b,a)∈E

fba =
∑

b∈N :(a,b)∈E
fab. A flow f transports a quantity k from s to t if

∑
b∈N :(s,b)∈E

fsb =∑
a∈N :(a,t)∈E

fat = k. The cost of flow f is
∑

(a,b)∈E
fab ×wab. By the construction of the graph, because

each edge has a unit capacity and because any living patient has an outgoing edge to any living
donor, there always exists a feasible, balanced flow transporting quantity n` from s to t. Recall that
n` is the number of patients in an incompatible pairs which is equal to the number of living donors.

The Omniscient algorithm amounts to finding a feasible, integral, balanced flow that transports
quantity n` from s to t with the minimum cost because the cost of a flow is the sum of the waiting
times of all the patients. Such a flow also respects constraints DDd in problem (G.39): if fjd = 1 for
j ∈ P` and d ∈ Dd, then fddc = 1 and it must be that fdci = 1 for some i ∈ D` and that fai = 0 for
all a ∈ (P`\{j} ∪ (Dd\{d}). In other words, whenever patient j is matched with a deceased donor
d at an integral feasible balanced flow, donor d (through his copy dc) must be “matched” with an
available living donor i who, in turn, cannot be matched to any other patient or deceased donor.

Hence, the omniscient algorithm has now been formulated as a minimum-cost flow problem that
can be solved in polynomial time (see Korte et al., 2011). Moreover, the integrability theorem
states that whenever all the capacities, costs, and flow to be transported are integers, there exists
an integral flow solving the problem. The market sizes we consider allow us to simply solve the
problem by linear programming.G.19

Implementation without DDL and exit. Appendix Table J.4 present results of the Omniscient
algorithm without DDL but with exits. Because of constraints Ei, the Omniscient algorithm is
implemented using ILP techniques by directly solving the optimization problem (G.39).
G.18In our specific case, integrability is equivalent to fab ∈ {0, 1} for a feasible flow.
G.19In our implementation in Matlab, the linear programming solver does not guarante an integral solution. However,
one can easily transform any non-integral solution into an integral one. The technique is similar to what is discussed
in Galichon (2018). In our simulations, we have never encountered any non-integral solution.
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H Data on Patients and Donors

We use administrative data from the Agence de la Biomedecine (ABM) who is in charge of organ
allocation in France. Our sample period is December 2013 to February 2018. The dataset contains
information on all the donors (deceased and living) who have been retrieved, all the patients who
have been transplanted, and all the patient-donor pairs having participated in the Kidney Exchange
Program (KEP) in France. We focus on the patient-donor pairs having ever participated in the
KEP, the patient-donor pairs who have gone through a desensitization procedure, and the deceased
donors. For our simulations, we use three types of information:

(i) the compatibility between any patient and any donor in our data;

(ii) the quality of a kidney from any donor in the data for any patient who has participated in the
KEP or for a patient who has gone through desensitization;

(iii) the arrival date of each deceased donor kidney, the transplant date of each patient-donor pair
who has gone through a desensitization procedure, and the registration date and the exit date
of each patient-donor pair who have ever participated in the KEP.

In the following, we detail how we construct the relevant variables. Section H.1 explains how
compatibility is calculated and how desensitization pairs and hypersensitized patients are defined,
Sections H.2 and H.3 present how quality indices are constructed for kidneys from deceased and
living donors, respectively, and, lastly, Section H.4 shows how these quality indices are used to select
deceased-donor kidneys to be proposed to unpaired patients in the Unpaired with DDL algorithm.

H.1 Patient-Donor Compatibility and Some Definitions

Patient pi and donor dj are incompatible if they are either blood type incompatible or HLA (human
leukocyte antigen) incompatible. We compare pi and dj ’s blood types to determine the blood type
compatibility between them. To evaluate the HLA compatibility between pi and dj , we check if
donor dj has any antigens that is unacceptable to patient pi: if dj has at least one antigen that is
unacceptable to pi, pi is HLA incompatible with dj .

We define (pi, di) as a desensitization pair if, in our data, pi has obtained a kidney from di while
pi is incompatible with di. pi is a hypersensitized patient if, in our data, pi is HLA incompatible
with at least 85 percent of all the donor kidneys (living and deceased) that have been retrieved or
who have ever participated in the KEP between December 2013 and February 2018. Similarly, we
define a patient to be sensitized if she is HLA incompatible with strictly more than 0 percent and
less than 85 percent of all the donor kidneys. Finally, patients who are HLA compatible with all
donor kidneys are called non-sensitized patients.

H.2 Quality Measure for Deceased-Donor Kidneys

We use the Kidney Donor Profile Index (KDPI) as a quality measure for deceased-donor kidneys.
The KDPI, which lies in [0, 100], is a relative measure. A kidney with a KDPI of x% is expected to
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have higher risk of graft failure than x% of recovered deceased-donor kidneys (i.e., longer function
than (100 − x)% of recovered deceased-donor kidneys) in the U.S. in a reference year (for which
we choose 2017). The expected risk of graft failure is measured by the Kidney Donor Risk Index
(KDRI) of the donor. Below we review the calculation of the KDRI; we then explain how it is
applied to our French data; in particular, how we deal with missing values; and, finally, we describe
how the KDPI is obtained from the KDRI.

Calculation of Kidney Donor Risk Index (KDRI). The KDRI, developed by Rao et al.
(2009), provides an estimated risk of graft failure after a transplant of a deceased donor kidney.
Similar to common practice, we use a scaled, donor-only version of the KDRI (Organ Procurement
and Transplant Network, 2019). It relies on 10 donor factors, including the donor’s age, height,
weight, ethnicity, serum creatinine, comorbidities (diabetes, hepatitis C virus—HCV, and hyperten-
sion), cause of death being cebrovascular accident (CVA) or not, and DCD status (being 1 for a
donation after cardiac death or 0 otherwise).

The association between these variables and graft survival is estimated by a multivariate Cox
proportional hazard model with graft outcomes from nearly 70,000 adults in the U.S. from 1995 to
2005. The estimated coefficients and the functional-form assumption lead to the following formula
for the KDRI:

KDRI = exp



0.0128× (age− 40)− 0.0194× (age− 18)× 1(age < 18)

+0.0107× (age− 50)× 1(age > 50)− 0.0464×
(
height−170

10

)
−0.0199×

(
weight−80

5

)
× 1(weight < 80)

+0.1790× 1(African American) + 0.1260× 1(History of Hypertension)

+0.1300× 1(History of Diabetes)
+0.0881× 1(Cause of Death = CVA) + 0.2200× (Creatinine− 1)

−0.2090× (Creatinine− 1.5)× 1(Creatinine > 1.5mg/dL)

+0.2400× 1(HCV positive) + 0.1330× 1(DCD)


We apply this formula to our data and obtain a value of the KDRI for each deceased-donor

kidney recovered in France during our sample period. Lehner et al. (2018) and Calvillo-Arbizu et al.
(2018) follow the same methodology, using German and Spanish data, respectively. They confirm
that the above formula, despite being estimated from a U.S. dataset, provides an accurate prediction
of graft failure in these two populations.

Missing values. Donor ethnicity is not recorded in our data. We assume that all deceased
donors are Caucasian as in Lehner et al. (2018) and Calvillo-Arbizu et al. (2018). Therefore,
1(African American) = 0 for all donors. For other variables, if there is a missing value, we set
the variable at its sample mean in the calculation of the KDRI, as recommended by Organ Pro-
curement and Transplant Network (2019).H.20 For instance, if History of Hypertension is missing
H.20The same imputation is also used by Lehner et al. (2018) and Calvillo-Arbizu et al. (2018).
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for a donor, we replace the dummy variable 1(History of Hypertension) by the proportion of donors
having a history of hypertension; if the information on a donor’s serum creatinine is missing, we
assume that this donor has a serum creatinine at the mean level of serum creatinine among all the
deceased donors in our sample.

Calculation of Kidney Donor Profile Index (KDPI) from KDRI The KDPI is a mapping
of the KDRI from a relative risk scale to a cumulative percentage scale (Organ Procurement and
Transplant Network, 2019). The reference population used for this mapping is all deceased donors
in the U.S. with a kidney recovered for the purpose of transplantation in the prior calendar year.
We use the year 2013 as the reference year.H.21

Table H.1 presents summary statistics. The median value for the KDPI is 65.73 (column 3),
meaning that 65.73 percent of the deceased-donor kidneys proposed to patients in the U.S. are of a
better quality than the median deceased-donor kidney in France. It is well-known that more kidneys,
and thus some kidneys of a lower quality, are proposed to patients in France than in the U.S. This is
also the case in other European countries, although at various degrees.H.22 Columns (4)–(6) consider
different selections among DDL kidneys to ensure that the quality of a DDL kidney is sufficiently
high.

Table H.1: LKDPI and KDPI: Summary Statistics

KDPI for DDL Kidneys
LKDPI within a Pair All Qualified for at least one patient among pairs in:

KEP Desensitization KEP KEP & Desentitization KEP (more selective)
(1) (2) (3) (4) (5) (6)

# of observations 78 508 13,036 6,142 13,019 4,230
Mean 104.45 89.33 65.73 39.43 65.74 29.33

Std Dev. (32.39) (41.15) (29.41) (19.27) (29.40) (15.02)
Median 125.42 125.42 71 42 71 31

Min 11.29 -4.66 0 0 0 0
Max 125.42 125.42 100 68 100 52

Notes: This table presents the summary statistics on the quality measure of a living donor kidney (LKDPI) or a DDL kidney
(KDPI). LKDPI is calculated within a KEP pair or a desensitization pair. Columns (4)–(6) consider different selections among
DDL kidneys in column (3) to ensure that the quality of a DDL kidney is sufficiently high. See Table 1 for more details on the
sample in each column.

H.3 Quality Measure for Living-donor Kidneys

We use the Living Kidney Donor Profile Index (LKDPI) as a quality measure for living-donor
kidneys. The LKDPI is developed by Massie et al. (2016) who use U.S. data to identify living donor
characteristics associated with the risk of post-transplant graft failure. Importantly, the LKDPI is
graft-specific, since it depends on characteristics of both the donor and the patient; by contrast,
H.21In other words, we use the OPTN mapping table produced in 2014 to map a KDRI to a KDPI. It is available at
https://optn.transplant.hrsa.gov/media/3416/kdri-to-kdpi-mapping-table-2013.pdf; retrieved on August 2,
2021.
H.22Using German data, Lehner et al. (2018) conclude that 66 percent of the deceased-donor kidneys proposed in the
U.S. are of a better quality than the median deceased-donor kidney in their data.
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the KDPI is only donor-specific. We calculate an LKDPI for each incompatible patient-donor pair
having ever participated in the KEP and for all desensitization pairs. The LKDPI is expressed on
the same scale as the KDPI such that the two indices can be directly compared: if, for a given
patient, the KDPI associated with a deceased-donor kidney is lower than the LKDPI associated
with a living-donor kidney, the living-donor kidney has a higher expected graft failure risk.

Table H.1 presents summary statistics on the calculated LKDPI within each KEP or desensitiza-
tion pair. Below we review the calculation of the LKDPI, explain how we deal with missing values,
and describe how we assign an LKDPI to HLA incompatible pairs.

Calculation of the Living Kidney Donor Profile Index (LKDPI). The LKDPI, developed
by Massie et al. (2016), combines 12 donor and patient factors to provide an index of graft failure
risk after a living donation. The factors include the donor’s age, estimated glomerular filtration
(eGFR), Body Mass Index (BMI), ethnicity, history of cigarette use, and systolic blood pressure
(SBP). There are also pair-specific factors: donation from a male donor to a male recipient, number
of HLA-B mismatches, number of HLA-DR mismatches, donor/recipient weight ratio (D/R WR),
and blood-type incompatibility.

The association between these factors and graft survival is estimated in a multivariate Cox
proportional hazard model with graft outcomes from 36, 025 living-donor kidney recipients in the
U.S. during 2005–2013. The estimated coefficients and the functional-form assumption lead to the
following formula for the LKDPI:

LKDPI = exp



−11.3 + 1.85× (age− 50)× 1(age > 50)− 0.381× eGFR+ 1.17×BMI

+22.34× 1(African American) + 14.33× 1(history of cigarette use)
+0.44× SBP − 21.68× 1(donor recipient both males)
+27.30× 1(donor-recipient blood-type incompatible)
−10.61× 1(donor recipient unrelated) + 8.57× (#HLA-B mismatches)
+8.26× (#HLA-DR mismatches)− 50.87×min{D/R WR, 0.9}


We apply this formula to our data to calculate the LKDPI for each blood-type incompatible

patient-donor pair who have ever participated in the KEP or went through a desensitization. Rehse
et al. (2018) apply the same methodology to a German dataset and validate the results in Massie
et al. (2016) in the German population. However, the above formula cannot be used to assess the
quality of an HLA incompatible graft, which we discuss below.

Missing values. Similar to the calculation of the KDRI, missing values are replaced by the cor-
responding sample mean (see Section H.2 for more details).H.23 Note that, even if we are only
interested in the pairs that have participated in the KEP or desensitization, the reference popula-
tion we use to calculate the sample means is all the pairs in our dataset, including 2, 737 pairs that
have ever participated in the KEP or whose patient has received a donated kidney from the paired
H.23Rehse et al. (2018) use the same imputation in their study using German data.
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donor.
The history of cigarette use is missing for the vast majority of patients in our data. For this

variable, similar to Rehse et al. (2018), we assume that this variable is zero when cigarette use is not
mentioned in the patient’s medical record. For the 8 pairs from Switzerland, our dataset contains a
lot of missing values. However, these pairs are HLA incompatible and hence must be considered as
special cases, as discussed below. Finally, for three blood-type incompatible pairs, most of the donor
information is missing. These missing values are replaced by the corresponding sample means.

LKDPI for HLA incompatible pairs. HLA incompatibility is not taken into account in the
LKDPI formula estimated by Massie et al. (2016). However, HLA incompatibility has a significantly
negative association with graft survival (see, e.g., Bentall et al., 2013). In particular, an HLA
incompatible graft is considered as being of a poorer quality than a blood-type incompatible graft.
For this reason, we assign HLA incompatible pairs an LKDPI equal to the highest value of the LKDPI
among HLA compatible pairs that have ever participated in the KEP (i.e., 125.42, columns 1 and 2
in Table H.1).

H.4 Selection of Deceased-Donor Kidneys

In Section 3.4, we allow DDL kidneys to be proposed to unpaired patients. We require such DDL
kidneys to be of a sufficiently high quality and acceptable to unpaired patients. We consider two
alternative ways for the selection:

• In the baseline simulations (Section 3.3), we consider that a DDL kidney dj is acceptable to
patient pi if dj ’s KDPI is lower than the LKDPI of the pair (pi, di). In other words, a DDL
kidney is considered as acceptable to pi if the risk of graft failure associated with this kidney is
lower than that associated with an incompatible graft between pi and her paired living donor
di. Column (4) of Table H.1 shows the summary statistics of the selected DDL kidneys for
KEP pairs only. Relative to column (3), we keep less than a half of the DDL kidneys. Similarly,
column (5) describes the kidneys selected for KEP and desensitization pairs. As there are 508
desensitization pairs, almost all DDL kidneys are selected for at least one pair.

• As a robustness check (Section J), we consider a more selective rule for DDL kidneys. Specifi-
cally, we first calculate the LKDPI among all HLA compatible KEP and desensitization pairs
(only the existing pairs without re-pairing). This median is 52.76 in our sample, and we then
consider a DDL kidney acceptable to patient pi if the DDL kidney’s KDPI is lower than 52.76.
Column (6) of Table H.1 shows the summary statistics of the selected DDL kidneys for KEP
pairs only with this selection rule. Relative to column (4), we keep fewer DDL kidneys (4,230)
as a result of being more selective.
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I Additional Simulation Results
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Figure I.1: Mean Waiting Time of Patients for Various Market Sizes

Notes: This figure shows the performance of the four algorithms in markets of eight different sizes, n ∈
{0.05, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}. The vertical lines indicate the size of some real-life KEPs.

(A) Unpaired with DDL (B) Unpaired with DDL and delay (δ = 6 months)
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Figure I.2: Median Waiting Time of Unpaired Patients in P: Various Market Sizes

Notes: This figure shows the performance of the three algorithms with DDL in markets of eight different sizes, n ∈
{0.05, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2}. The vertical lines indicate the size of some real-life KEPs.
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(A) Mean waiting time of patients (B) Match rate with living donors
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Figure I.3: Performance of Pairwise/Unpaired with DDL for Different Values of δ

Notes: This figure shows the performance of the two algorithms with DDL and different values of δ in markets of size n = 0.05

similar to that of the French KEP.

Table I.2: Pairwise/Unpaired with DDL, with or without Delay

With DDL With DDL
& alpha = 0 months & alpha = 6 months
Pairwise Unpaired Pairwise Unpaired

(1) (2) (3) (4)

Transplants
% patients receiving transplant 94% 96% 85% 93%
% transplants from living donors 3% 26% 24% 55%

Reduction in the supply of O kidneys to the DDLa 41 37 34 30
O patients (in the KEP) receiving transplants 44 45 40 44
Total # of O patients benefited (KEP & DDL)b 3 8 6 14

Average waiting time (days)
All patients (censored) 54 43 193 91

patients with an O donor 57 56 167 65
patients with an A donor 55 40 204 108
patients with an B donor 49 39 196 93

patients with an AB donor 44 23 209 62

Notes: The statistics are from the 1000 sets of simulations, each of which contains independent draws of pairs with a daily
arrival rate of 0.05 (roughly the size of France’s KEP). There are on average 83 incompatible pairs, among which 48 have an O
patient.
a For a given algorithm, the reduction in the supply of O kidneys to the DDL is the number of O kidneys that the algorithm
takes from the DDL minus the number of O living donor kidneys that it gives to the DDL.
b For a given algorithm, the total number of O patients (in the KEP and on the DDL) benefited is the number of O patients in
the KEP who receive a transplant minus the reduction in the supply of O kidneys to the DDL.
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J Robustness of the Unpaired Algorithm

We now present a set of robustness checks on the performance of our results. In most cases, we
introduce a unique change into the baseline (columns 4 and 7 of Table 2) for the market size of
n = 0.05.

Pairs opting out of donation-before-receipt. When a patient is hard-to-match, she may decide
not to let her paired donor donate before she receives a transplant, while she is still willing to accept
a transplant before her paired donor donates. We therefore consider the possibility of such patients
opting out of donation-before-receipt (or entering P). That is, an opting-out pair remains in the
KEP, and the donor cannot donate before the patient receives a transplant. We investigate the
effects of two types of opt-out policies on the performance of the algorithms.

First, we let hypersensitive patients opt out. In the pool of 586 pairs, they account for 24 percent.
As shown in Appendix Table J.3, relative to the baseline of no opting out, the overall waiting time
significantly increases under Unpaired from 350 (column 1) to 455 days (column 2), while doubling
under Unpaired with DDL, from 91 (column 4) to 184 days (column 5). The drop in transplant rate
is also noticeable—from 63 to 50 percent under Unpaired, and 93 to 82 percent under Unpaired with
DDL. Importantly, the reduction is larger among hypersensitized patients—15 percentage points
under Unpaired and 39 percentage points under Unpaired with DDL.

Second, we let the patients with a PRA above 0.98, who are the hardest to match, opt out of
donation-before-receipt. They account for 13 percent of our pool of 586 pairs. Columns (3) and (6)
shows that the performance is worse than the baseline (columns 1 and 4) but not as bad as the first
opt-out policy; again, the negative effects are mostly on hypersensitized or O patients.

One may alternatively let the pairs with a hypersensitized patient and an AB donor opt out of
entering P. The rationale is that an AB donor is hard-to-match too, and an exchange may encourage
them to opt out to reduce the overall donor waiting time in D. In our pool of 586 pairs, there are
only 4 such pairs, less than 0.7 percent. As expected, the results with this opt-out policy, although
not reported, are almost identical to the baseline.

In sum, the performance of the Unpaired algorithms decreases with the number of patients
opting out of donation-before-receipt. However, the worst-case results, which are from the first
opt-out policy, still dominate Pairwise and Chain in the baseline (Table 2) on every dimension.
Importantly, these opt-out policies harm those who choose to opt out, reducing their incentive to
opt out.

Higher-quality DDL kidneys in Unpaired with DDL. In the above simulations of Unpaired
with DDL, we assume that a patient always accepts a DDL kidney when receives the offer. In
practice, the algorithm should allow a patient to decide. Therefore, when a DDL kidney is not
considered comparable to a living donor kidney, a patient may reject the DDL kidney. We test how
sensitive our results are to this concern by screening DDL kidneys with a higher standard. To qualify
for the algorithm, we now require a DDL kidney to have a KDPI below the median LKDPI among
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Table J.3: Unpaired with DDL & δ = 6 Months: Opting out and an Alternative Selection of DDL
Kidneys

Unpaired Unpaired with DDL & δ = 6 months
Opting out of P Opting out of P

Baseline Hypersensitized Patients with Baseline Hypersensitized Patients with Higher-quality
patients PRA > 0.98 patients PRA > 0.98 DDL kidneys

(1) (2) (3) (4) (5) (6) (7)

Average waiting time (days)
All patients (censored) 350 455 405 91 184 133 95

hypersensitized patients 574 683 610 203 538 348 228
O patients 486 623 562 106 201 154 108

Patients receiving transplant 176 205 192 72 89 77 74
hypersensitized patients 281 266 280 145 239 154 166

O patients 311 443 373 83 99 87 84

Transplants
% patients receiving transplant 63% 50% 56% 93% 82% 88% 92%

hypersensitized patients 40% 25% 35% 82% 43% 65% 80%
O patients 46% 30% 37% 91% 81% 86% 91%

% transplants from living donors 100% 100% 100% 55% 46% 49% 56%

Patients going through P
Total number 29 22 26 29 24 28 29

hypersensitized patients 11 0 5 13 0 6 13
O patients 24 20 22 21 19 21 21

Waiting time of patients in P
Median 245 289 249 6 2 3 7

hypersensitized patients 517 0 346 54 0 9 75
O patients 237 310 259 6 3 3 6

Donors going through D
Total number 26 20 22 36 24 29 36

AB donors 4 4 4 4 4 4 4

Waiting time of donors in D
Median 339 297 314 39 3 5 46

AB donors 618 589 604 48 4 7 55

Notes: There are in total 83 incompatible pairs, among which 20 pairs have a hypersensitized patient and 48 have an O patient.
The statistics reported are from the 1000 sets of simulations. The baseline, columns (1) and (4), is copied from columns (4) and
(7) of Table 2. Columns (2)–(3) and (5)–(7) have the same simulations as in Table 2 but each has the following modification:
columns (2) and (5) have hypersensitive patients opting out of entering P; columns (3) and (6) have patients with a PRA above
0.98 opting out of entering P; in column (7), a qualified DDL kidney for any patient must have a KDPI below the median
LKDPI among all living donors (in both the KEP sample and the desensitization sample).

all compatible living donations in France in our sample period. Recall that the baseline only requires
that the DDL kidney be compatible with the patient and have a KDPI below the LKDPI of the
patient’s paired incompatible donor. As expected, this higher quality standard reduces the supply
of DDL kidneys, and thus the match rate with living donors increases, as shown in Column (8) of
Table J.3, but very mildly from 55 to 56 percent. The results also show that it only slightly worsens
the algorithm’s performance relative to the baseline (column 4).

Allowing pairs to exit. We now relax the no-exit assumption. For each arriving pair as simulated
in Section 3.2, they have a fixed daily probability of exiting. In our simulations, we fix this daily
exit probability to 1% which corresponds to a monthly probability of 26%. Recall that e(i) is the
exit date for an incompatible pair. Furthermore, we make the following assumption: if (pi, di) are
still waiting at e(i), both of them exit at e(i); if di donates before e(i) and if pi has not received a
kidney by e(i), pi leaves at e(i); if pi receives a kidney from someone else before e(i), di stays until
the end of our simulation, T . For pairs who do not exit in our data, we set e(i) = T .
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With these assumptions, we simulate the first three algorithms (i.e., Pairwise, Chain, Unpaired)
in the same way as before, while taking into account some pairs and patients may exit. We update
the Omniscient algorithm as described in Appendix G to take into account exit constraints.

Appendix Table J.4 shows the same pattern across algorithms as in the baseline (Table 2), which
implies that pair exits do not affect the performance ranking of the algorithms. Unpaired (column 4)
remains similar to Omniscient (Column 6) in terms of transplant rate (57 percent vs. 58 percent),
although less so in terms of waiting time (141 vs. 95 days).

Table J.4: Performance of the Matching Algorithms when Pairs May Exit

Pairwise 2-way & Chain & With DDL
(2-way) 3-way Pairwise Unpaired Omniscient & alpha = 6 months
Exchange Exchanges Exchange Exchange Pairwise Unpaired

(1) (2) (3) (4) (5) (6) (7)

Average waiting time (days)
All patients (censored) 274 256 258 141 95 189 85

hypersensitized patients 319 310 317 257 222 236 174
O patients 300 283 294 185 120 204 104

Patients receiving transplant 156 155 142 98 34 157 63
hypersensitized patients 140 170 142 165 88 206 125

O patients 233 210 232 171 44 180 84

Transplants
% patients receiving transplant 25% 29% 28% 57% 58% 46% 70%

hypersensitized patients 12% 14% 12% 28% 31% 34% 48%
O patients 18% 22% 19% 44% 46% 42% 63%

% transplants from living donors 100% 100% 95% 100% 100% 44% 72%

Patients going through P
Total number - - - 25 21 - 24

hypersensitized patients - - - 10 10 - 10
O patients - - - 19 16 - 18

Waiting time of patients in P
Median - - - 106 94 - 16

hypersensitized patients - - - 187 156 - 69
O patients - - - 103 94 - 18

Donors going through D
Total number - - 4 30 40 - 32

AB donors - - 1 4 4 - 4

Waiting time of donors in D
Median - - 195 334 297 - 119

AB donors - - 344 610 581 - 163

Notes: There are in total 83 incompatible pairs, among which 20 pairs have a hypersensitized patient and 48 have an O patient.
The statistics reported are from the 1000 sets of simulations. The simulations are the same as in Table 2, except that pairs may
exit before their patient receives a kidney. For more details, please see the notes of Table 2.

Compared with the baseline (column 4 of Table 2), the transplant rate of Unpaired is only slightly
worsened when pairs may exit, 57 percent vs. 63 percent. The average (censored) waiting time is in
fact lower when pairs may exit (141 vs. 350 days), because the waiting time is censored at exit date.

Regarding Unpaired with DDL and δ = 6 months, compared with the baseline (column 7 of
Table 2), the transplant rate is worsened significantly, 93 percent vs. 70 percent, although remaining
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much higher than Unpaired and Unpaired with DDL. On the other hand, the average (censored)
waiting time decrease slightly, 85 vs. 91 days.

Multiple chains. In practice, multiple altruistic donors may arrive, making multiple chains possi-
ble. To see how this can improve the performance of Chain, we draw a certain number of high-quality
DDL kidneys as altruistic donors and assume that they arrive on the date they become a DDL kid-
ney. A high-quality DDL kidney must have a KDPI below the LKDPI of one of the living donors
in the KEP pairs. Similar to the previous simulations of Chain, we assume that after arrival, every
DDL kidney remains available until either the end of our simulation or when it is transplanted. This
may result in multiple chains. At the same time, 2-way pairwise exchanges are still allowed.

We take 58 DDL kidneys as the number of altruistic donors, corresponding to the numbers of
DDL kidneys that Unpaired with DDL (and δ = 0) uses in the baseline . Note that for every DDL
kidney that Unpaired with DDL uses, a living donor donates a kidney to the DDL. By contrast,
Chain does not require any living donor to donate to the DDL.

As expected, the results show that allowing for multiple chains improves upon the single-chain
exchange. By using on average 41 altruistic donors, multiple chains reach a transplant rate of
83 percent, still lower than the rate of 93 percent under Unpaired with DDL and δ = 6 months.
Moreover, the average (censored) waiting time among all patients is 200 days, and that among
transplanted patients is 113 days; both are higher than those under Unpaired with DDL and δ = 6

months (91 and 72 days, respectively).
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