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Abstract

Building on previous literature that examines the influence of intergenerational transmission in cul-

tural evolution, we highlight the importance of the marriage market in the determination of cultural

homogeneity (“melting pot”) versus heterogeneity (“diversity”). To do so, we characterize cultural

evolutionary processes under different distributions of marital preferences and stable matching

schemes. In our setting, cultural substitutability (Bisin and Verdier, 2001) is neither sufficient nor

necessary for cultural heterogeneity. We introduce a new concept, elasticity of cultural substitution,

to capture the degree of increase in vertical socialization efforts in response to minority population

decline. With perfect or inelastic vertical transmission in homogamous families, cultural heterogeneity

is sustained only if all proposers are homophilic or all members of a cultural group are homophilic.

With imperfect vertical transmission in homogamous families, the presence of heterophilic agents

may destabilize cultural heterogeneity, and the proportion of heterophilic agents and elasticity of

cultural substitution determine whether cultural heterogeneity can be sustained. We discuss the

model’s implications for the long-lasting impact of temporary gender imbalance on cultural evolution

as well as the cultural assimilation and preservation of minorities and immigrants under distinct

governmental and religious attitudes toward intermarriage.
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1 Introduction

Culture plays a crucial role in many economic choices and outcomes at the individual and national level

(Landes, 1998; Guiso et al., 2006; Fernández, 2008, 2011; Alesina and Giuliano, 2015). Which cultures or

cultural traits survive and thrive andwhat familial and societal factors influence their success are important

questions. A growing literature seeks to disentangle the mechanisms that drive the evolution of culture

across generations; see Bisin and Verdier (2011, 2023) for surveys.

Children are primarily cultivated in families. Familial transmission of preferences in cultural evolution

has attracted biologists and anthropologists since Cavalli-Sforza and Feldman (1981) and Boyd and Richer-

son (1985) and economists since Bisin and Verdier (2000, 2001). In this paper, we demonstrate that family

formation———what marital preferences individuals possess and how parents are matched———is also of prime

importance for our understanding of cultural evolution. Empirical evidence and historical examples point

to the important roles of the marriage market and marital preferences in cultural evolution. For instance,

cultural norms differ in patriarchal and matriarchal societies (Andersen et al., 2008; Gneezy et al., 2009;

Andersen et al., 2013; Giuliano, 2017; Lowes, 2020; Brulé and Gaikwad, 2021; Tène, 2021); factors that affect

the respective positions of men and women in the marriage market, such as a temporary gender imbal-

ance, could have a long-run impact on cultural evolution (Grosjean and Khattar, 2019; Gay, 2019; Teso,

2019; Alix-Garcia et al., 2020; Baranov et al., 2021); and government policies and religious practices with

respect to intermarriage lead to different cultural assimilation patterns of ethnic minorities and immigrants

(Silcock, 1963; Bisin and Verdier, 2000; Skinner, 2008; Dien and Knapp, 2020).

A central question regarding cultural evolution is under what conditions cultural integration and

preservation occur. Our paper contributes to this line of inquiry by studying cultural evolution when

agents have heterogeneous marital preferences and family formation is determined by stable matching

(Gale and Shapley, 1962). Whereas most models in the literature sidestep the marriage market or assume

homogeneous marital preferences and exogenous matching, we consider heterogeneous marital prefer-

ences and endogenous matching.
1

The primitives of the Gale-Shapley matching model are sets of men and women and preference order-

ings of individuals over agents of the opposite sex. These elements are determined in our model as follows.

At the beginning of each discrete period, a mass of women and a mass of men become adults. Each adult

wants to match with an adult of the opposite sex to form a family. Each participant in the matching mar-

ket has a cultural trait, acquired during childhood, and marital preferences over the cultural trait of their

partner. In addition to the usually considered homophilic marital preferences———individuals prefer partners

with the same trait the most———we incorporate the possibility that some men and women are heterophilic:

Individuals prefer partners with a different cultural trait. Stable matching depends on the distribution of

cultural traits and the distribution of marital preferences in both populations such that no positive mass

of individuals of opposite sexes would both rather have each other than their current mates. in the case of

1
As argued by Pollak (2019) and supported by empirical evidence, the Gale-Shapley matching model is the appropriate

framework for analyzing marriage-market equilibrium under the assumption that bargaining in marriage determines alloca-

tion within marriage. As we will see, the Gale-Shapley model is especially appropriate when agents have heterogeneous marital

preferences———e.g., preferences other than homophily———as considered in this paper.
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multiplicity, the set of stable matchings forms a lattice, and among them there is one men-optimal stable

matching (MOSM) and one women-optimal stable matching (WOSM), with MOSM (resp., WOSM) being

the stable matching the most preferred by men (resp., women) and the least preferred by women (resp.,

men), achieved by men (resp., women) acting as the proposers through the so-called deferred acceptance

(DA) algorithm, which Baïou and Balinski (2002) generalize to the setting with a continuum of agents.

We assume that, either MOSM or WOSM is chosen in every period. One can imagine that marriages in

a society are arranged through the DA algorithm, and the society either has a convention that only men

propose or one that only women propose.

Once matched, each couple has two children, one son and one daughter. Children acquire the cultural

trait they will retain when they become adults. Through the cultural transmission process, stable match-

ing in one period will determine the joint distribution of cultural traits among populations of both men

and women in the next period. Since homogamies———marriages in which spouses have the same cultural

trait———have a well-defined cultural trait to transmit, they have a more efficient socialization technology

than other families. We consider two transmission technologies of homogamies. We first consider perfect

vertical transmission: Homogamies transmit this trait to their children with probability one. Then, we con-

sider imperfect vertical transmission that is culturally substitutable to societal transmission: Homogamies

transmit their culture with a probability that is strictly less than one and strictly decreasing in the propor-

tion of that trait in the population. If they fail to transmit their cultural trait, their children are socialized

by the society at large (oblique transmission): They adopt the trait of a randomly chosen adult role model.

Children of heterogamies———marriages in which two spouses have different cultural traits———do not have a

well-defined familial model to follow, and thus we assume they are socialized by the society at large.

Broadly speaking, we analyze how cultural evolution is influenced by the determinants of stable

matching———namely, the distribution of marital preferences and the side of the market favored by the

matching procedure———under common transmission technologies. In this regard, we provide a unified

and generalizable model to investigate the effects of different forms of matching and intergenerational

transmission on cultural evolution. More specifically, we characterize the conditions under which cultural

heterogeneity is sustained in the long run, which refines and advances prior results (Cavalli-Sforza and

Feldman, 1981; Boyd and Richerson, 1985; Bisin and Verdier, 2000, 2001; Della Lena and Panebianco, 2021).

In particular, we identify two key factors that affect the extent of cultural diversity in the stable steady state.

First, the fraction of homophilic proposers. Since this fraction influences the distribution of homogamies

in the population and homogamies possess a better transmission technology, it crucially shapes cultural

evolution and the long-run distribution of traits. Second, our new concept, elasticity of cultural substitu-

tion, which captures the strength of substitutability between oblique and vertical transmission. It describes

the percentage increase in the chance of vertical transmission for the minority group———the crucial source

of cultural preservation for minorities———as the minority population decreases. Our main results, listed

below, illustrate the interactions between these two factors.

We start by demonstrating that if all proposers are homophilic, the stable steady-state distribution of

traits is culturally heterogeneous. This holds true regardless of the cultural transmission technology (with

or without cultural substitutability) and regardless of the distribution of receivers’ marital preferences.
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Indeed, if all proposers are homophilic, as many homogamies as possible are formed. Then, in each cul-

tural trait, the proportion of homogamies is determined by the short side of the marriage market. Since

homogamies have a better transmission technology, this creates a tendency toward the equal distribution

of traits between the populations of men and women, and the society ends up in a situation in which all

marriages are homogamous so that each cultural group can maintain its legacies. We reach exactly the

same conclusion when one cultural group is strongly opposed to intermarriage, such that all members of

this group (both men and women) are homophilic.

With heterophilic proposers, the long-run distribution of traits crucially depends on the transmission

technology under consideration. Under either perfect or inelastic vertical transmission (i.e., in the ab-

sence of cultural substitutability), an arbitrarily small fraction of heterophilic proposers is sufficient for

cultural diversity to disappear so that cultural homogeneity is the generic long-run outcome. Moreover,

the surviving culture is the initially dominant one in population size. This is because although heterophilic

preferences facilitate the formation of heterogamies, the majority group manages to preserve a larger frac-

tion of homogamies. Since homogamous couples are more effective in transmitting their traits, this creates

an evolutionary advantage for the majority group, which ultimately drives out the minority group.

These results illustrate the crucial role played by the distribution of proposers’ marital preferences.

For instance, under either perfect or inelastic vertical transmission, diversity is preserved if all proposers

are homophilic, but this is not the case if some proposers are heterophilic. This implies that when one

side of the matching market is fully homophilic and the other side is not, the matching institution, which

determines the side of the market that will play the role of proposers, might have dramatic consequences

for the long-run cultural composition of the society. We demonstrate that because of this feature, even

though MOSM is the outcome men prefer from a static point of view, this is not necessarily true from a

dynamic point of view: Cultural evolution under MOSM (resp., WOSM) might lead to a path considered

to be suboptimal by men (resp., women). This result also implies that factors that influence the selection

of one particular stable matching (MOSM or WOSM) might have crucial consequences for the long-run

distribution of traits. The choice between MOSM and WOSM might also be related to gender imbalance.

The distribution of marital preferences of agents on the shorter side of the marriage market, even if they

are not proposers, determines the matching outcome. Hence, a slightly skewed gender ratio can result in a

dramatic change in the matching outcome and, consequently, the cultural evolution. We introduce gender

imbalance in our model and show that a short-run change in gender ratio leads to a long-run change in

the cultural distribution; this is in line with empirical findings of long-lasting impacts of temporary gender

imbalance (Grosjean and Khattar, 2019; Gay, 2019; Teso, 2019; Alix-Garcia et al., 2020; Baranov et al., 2021).

Under imperfect vertical transmission, cultural substitutability helps maintain cultural diversity except

in cases in which either all proposers and/or receivers are heterophilic or an entire cultural group is het-

erophilic with the other group being nonhomophilic. In other words, as long as there is a positive fraction

of homophilic proposers cultural diversity is sustainable in the long run. The extent of cultural diversity

(i.e., the size of the minority group) in the stable steady state increases with the fraction of homophilic

proposers and the elasticity of cultural substitution. We apply our results to connect intermarriages with

cultural assimilation and preservation, and provide examples of how a more open attitude toward inter-
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marriages due to government or religion leads to cultural homogeneity and a more restricted attitude leads

to cultural heterogeneity (Silcock, 1963; Bisin and Verdier, 2000; Skinner, 2008; Dien and Knapp, 2020).

Most of the cultural evolution literature (Cavalli-Sforza and Feldman, 1981; Boyd and Richerson, 1985;

Bisin and Verdier, 2001; Cheung and Wu, 2018) considers asexual reproduction models in which cultural

transmission is the result of vertical parental socialization and oblique society socialization. Since a child is

socialized by one parent, couple formation does not play a role in cultural evolution. We depart from these

foundational models by considering a two-sex cultural transmission model in which marital preferences

are heterogeneous and thematching between spouses is endogenous. Whereas the literature highlights the

fact that cultural substitutability is key for the preservation of cultural diversity, we show the central role

played by the interactions between cultural substitutability and preference for homophily. In particular,

cultural heterogeneity may arise even in the absence of cultural substitutability, and cultural homogene-

ity might be the long-run outcome even in the presence of cultural substitutability. For some matching

structures, cultural substitutability is neither necessary nor sufficient for cultural heterogeneity.

Some papers consider socialization by two parents. Bisin and Verdier (2000) propose a cultural trans-

missionmodel with a marriage market. Individuals might be one of two types and prefer that their children

have their trait. Agents must enter a frictional marriage market to marry and reproduce. The marriage

market consists of two restricted matching pools exclusive to the two types, respectively, and a com-

mon matching pool. Entering a restricted matching pool is costly. The authors assume that homogamous

parents enjoy more efficient socialization for their shared type than heterogamous parents. As a result,

individuals prefer to and do marry their own type (homophily). They also assume that daughters and

sons are socialized in the same way, such that the cultural distribution is the same across gender. In con-

trast, we propose a two-sex cultural transmission model and allow for heterophilic preferences. These

features separate the consideration of marital preferences and the socialization of cultural traits, and allow

consideration of the joint cultural evolution of men and women.

Recently, some two-sex cultural evolution models have been developed. Hiller and Baudin (2016) and

Baudin and Hiller (2019) propose models in which parents may socialize their sons and daughters differ-

ently. However, their analysis considers random matching; the effects of stable matching on the evolu-

tion of preferences are not considered. Wu and Zhang (2021) allow for random or assortative matching

of spouses, but implicitly assume homophily (because heterophilic individuals are not distinct from ho-

mophilic ones when stable matching is not considered). In contrast, we consider stable matching with

heterophilic individuals so that there could exist multiple stable matches; as a result, multiple cultural

equilibria may arise.

The rest of the paper is organized as follows. Section 2 presents the general setup of the model. Section

3 shows that uniformly homophilic proposers or an entirely homophilic cultural group leads to culturally

heterogeneous states. Section 4 shows that under perfect or inelastic vertical transmission in homogamies,

even an arbitrarily small fraction of heterophilic proposers is sufficient for cultural homogeneity. Section

4 also presents the implications of having gender-differential distributions of marital preferences. Section

5 presents the results for imperfect vertical transmission with cultural substitutability in homogamies, and

Section 6 concludes. Appendices collect omitted proofs and details.
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2 Model

There is mass 1 + 𝜆𝑡 of men (𝑚) and a unit mass of women (𝑤 ) in every period 𝑡 ∈ {0, 1, . . . }. We assume

equal population size (𝜆𝑡 = 0) except in Section 4.3.2, which discusses the implications of imbalanced sex

ratio. Each person lives for two periods: childhood and adulthood. Each adult has cultural trait/type 𝑎 or

𝑏. Let 𝑝𝑡 denote the mass of type-𝑎 men in period 𝑡 , and 𝑞𝑡 the mass of type-𝑎 women in period 𝑡 . In the

remainder of the paper, we will frequently use 𝜃 to denote a trait/type, i.e., 𝜃 equals either 𝑎 or 𝑏.

2.1 Marital preferences

Let𝑈𝜃𝑚𝜃𝑤 denote a type-𝜃𝑚 man’s utility from marrying a type-𝜃𝑤 woman and let𝑉𝜃𝑤𝜃𝑚 denote a type-𝜃𝑤

woman’s utility from marrying a type-𝜃𝑚 man. We assume that for any 𝜃 and 𝜃 ′, 𝑈𝜃𝜃 ′ > 0 and 𝑉𝜃𝜃 ′ > 0,

and we normalize the utility from remaining single to 0. This implies that each woman considers each

man to be an acceptable match and vice versa. Each individual belongs to one of two marital preference

groups: homophilic or heterophilic. For any types 𝜃 and 𝜃 ′ ≠ 𝜃 , a type-𝜃 man is homophilic if 𝑈𝜃𝜃 > 𝑈𝜃𝜃 ′

and heterophilic if 𝑈𝜃𝜃 < 𝑈𝜃𝜃 ′ . Women’s marital preferences are similarly defined. We assume that each

adult of gender 𝑔 ∈ {𝑚,𝑤} and cultural type 𝜃 ∈ {𝑎, 𝑏} is homophilic with an independent probability

denoted by ℎ𝑔𝜃 ∈ [0, 1]. For a given time 𝑡 , we define 𝑀𝑡
𝜃𝑖

as the set of type-𝜃 men having group 𝑖 = 1

(homophilic) or group 𝑖 = 2 (heterophilic) preferences;𝑊 𝑡
𝜃𝑖
is similarly defined for women.

2.2 Stable matching

In each period, men and women match to form marriage pairs. A type-𝜃𝑚 husband and a type-𝜃𝑤 wife

form a 𝜃𝑚𝜃𝑤 couple, which is homogamous if 𝜃𝑚 = 𝜃𝑤 and heterogamous otherwise. Let 𝜇𝑡
𝜃𝑚𝜃𝑤

denote the

mass of 𝜃𝑚𝜃𝑤 couples in period 𝑡 . A (feasible) matching is described by a 2-by-2 matrix M
𝑡 = (𝜇𝑡

𝜃𝑚𝜃𝑤
)

that satisfies 𝜇𝑡
𝜃𝑚𝜃𝑤

∈ R+ for any 𝜃𝑚 and 𝜃𝑤 , and feasibility conditions 𝜇𝑡𝑎𝑎 + 𝜇𝑡
𝑎𝑏

= 𝑝𝑡 , 𝜇𝑡
𝑏𝑎

+ 𝜇𝑡
𝑏𝑏

= 1 − 𝑝𝑡 ,

𝜇𝑡𝑎𝑎 + 𝜇𝑡
𝑏𝑎

= 𝑞𝑡 , and 𝜇𝑡
𝑎𝑏

+ 𝜇𝑡
𝑏𝑏

= 1 − 𝑞𝑡 .2

Since we are looking at continuums of individuals with finite types, we adopt the definition of stable

matching of Echenique et al. (2013). A type-𝜃𝑚 man and a type-𝜃𝑤 woman form a blocking pair for M
𝑡

if there exist types 𝜃 ′𝑚 ≠ 𝜃𝑚 and 𝜃 ′𝑤 ≠ 𝜃𝑤 such that 𝑈𝜃𝑚𝜃𝑤 > 𝑈𝜃𝑚𝜃 ′
𝑤
, 𝑉𝜃𝑤𝜃𝑚 > 𝑉𝜃𝑤𝜃 ′

𝑚
, 𝜇𝑡

𝜃𝑚𝜃 ′
𝑤

> 0 and

𝜇𝑡
𝜃 ′
𝑚𝜃𝑤

> 0. A matchingM
𝑡
is stable if there are no blocking pairs for it.

3

We further assume that men and women match according to either men-optimal stable matching

(MOSM)———the stable matchingmost preferred bymen———orwomen-optimal stable matching (WOSM).Baïou

and Balinski (2002) show the existence of these twomatchings for continuous populations with finite types.

2
If there are any singles, the masses of singles who possess different cultural traits can be backed out from the matching

matrix. Note that since we are interested in the joint evolution of 𝑝𝑡 and 𝑞𝑡 , and since———as will become clear———this evolution

depends on the composition of couples in terms of cultural types, we define a matching in terms of only those types rather than

in terms of both cultural types and preference groups.

3
A stable matching must also be individually rational, which means that no individual should prefer remaining single to

retaining their match. This is always the case given our earlier assumption, since the utility derived from celibacy is normalized

to 0 and the utility of a match is strictly positive. This assumption, along with the fact that there are as many women as men,

implies that at any stable matching, all individuals are matched. In Section 4.3.2 we study the setting in which the two populations

are not balanced, so that some individuals remain single.
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MOSM (resp., WOSM) can be achieved by the generalized Gale-Shapley deferred acceptance algorithm if

men (resp., women) are proposers. Hence, we refer to the side that has implemented their most preferred

stable matching as the proposing side and to the opposite side as the receiving side.

2.3 Intergenerational transmission

Each couple has two children, one son and one daughter; equivalently, each child is male or female with

equal probabilities. Children are born without a cultural trait and will acquire, during childhood, a trait

they will hold during their entire adulthood. As is usual in the literature, the cultural transmission process

entails two steps. Children are first socialized by their parents. If this stage of vertical transmission fails,

children are socialized by the society at large in the second stage of oblique transmission. We assume

that only parents from homogamies can directly transmit their culture during the vertical transmission

stage. Or, stated differently, the probability of vertical transmission by heterogamous couples is zero: All

heterogamies have oblique transmission.
4
Since heterogamous couples do not have a well-defined cultural

type to transmit, it is natural to assume that a homogamy has a more superior transmission technology

than does a heterogamy. Bisin and Verdier (2000) and Hiller and Baudin (2016) consider this transmission

technology, for example, and Dohmen et al. (2012) provide empirical support. Hence, the probability that

a child adopts a particular cultural type depends on the cultural types of both parents. We let 𝑃𝑡
𝜃𝜃 ′ and

𝑄𝑡
𝜃𝜃 ′ denote the probability that the son and daughter of trait-𝜃 father and trait-𝜃 ′ mother possess trait 𝑎

at date 𝑡 + 1, respectively. Their expressions depend on the vertical transmission process in homogamies.

Note that although we only explicitly model the transmission of cultural traits, marital preferences might

also be transmitted across generations over time because marital preferences are correlated with cultural

traits in our model.
5

Oblique transmission in heterogamies. Children of heterogamous couples acquire their trait during

the oblique socialization stage: Each child randomly searches for a role model in their respective gender

and adopts the cultural type of this role model with probability one. This corresponds to the benchmark as-

sumption in the literature (Cavalli-Sforza and Feldman, 1981; Boyd and Richerson, 1985; Bisin and Verdier,

2001, 2011). This assumption involves a simple conformist component in cultural evolution.

Perfect vertical transmission in homogamies. Homogamous couples transmit their cultural type to

their children with probability one. In contrast, as previously discussed, the probability of vertical trans-

mission is zero for heterogamous couples and their children are directly subject to societal transmission.

The combination of perfect vertical transmission in homogamies and oblique transmission in heterogamies

can be seen as a relaxation of the first generation of cultural transmission models (Cavalli-Sforza and Feld-

man, 1981; Boyd and Richerson, 1985). In those models, the vertical transmission probability is exogenous

and constant. Instead, we consider the setting in which this probability depends on the homogamous or

4
This assumption is relaxed when we consider an alternative transmission technology for heterogamies, imitative logit, in an

earlier version of the paper (Hiller et al., 2021). The current paper focuses on cultural homogeneity versus cultural heterogeneity

when all heterogamies have oblique transmission.

5
For instance, if ℎ𝑚𝑎 > ℎ𝑚𝑏 and ℎ𝑤𝑎 > ℎ𝑤𝑏 , culture 𝑎 is less tolerant of intermarriage than culture 𝑏.
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heterogamous type of couple———but, for a given type of couple, it is exogenous and constant. In summary,

transmission probabilities are

𝑃𝑡𝑎𝑎 = 𝑄𝑡
𝑎𝑎 = 1, 𝑃𝑡

𝑏𝑏
= 𝑄𝑡

𝑏𝑏
= 0, 𝑃𝑡

𝑎𝑏
= 𝑃𝑡

𝑏𝑎
= 𝑝𝑡 , 𝑄𝑡

𝑎𝑏
= 𝑄𝑡

𝑏𝑎
= 𝑞𝑡 .

Imperfect vertical transmission in homogamies. We relax the perfect vertical transmission assump-

tions in homogamous couples such that for these couples, the probability of direct transmission of the

parental trait is not always one. Let this vertical transmission probability be 𝑑 (𝑟 ), where 𝑟 is the mass of

individuals of the same gender and type, and 1−𝑑 (𝑟 ) is the probability that the transmission is oblique. We

assume that 𝑑 (𝑟 ) is continuous, differentiable, and decreasing in 𝑟 . This captures the cultural substitutabil-
ity between vertical and oblique transmission (Bisin and Verdier, 2001). That is, the vertical transmission

probability of a trait is higher if there is a lower proportion of the trait. This property can be rationalized

in a model in which homogamies have the option to make costly effort to transmit their traits and exhibit a

form of cultural intolerance, as in Bisin and Verdier (2001).
6
In such kind of model, when 𝑟 is high, parents

anticipate that the probability for their children to adopt their own cultural traits, if they fail to transmit it

directly, will be high. Consequently, they will have a lower incentive to exert efforts to directly transmit

their traits, making the probability of direct transmission 𝑑 (𝑟 ) low.
As we will see, the strength of cultural substitutability plays a critical role in the possibility of persis-

tence of cultural diversity. We introduce the notion of elasticity of cultural substitution 𝜀𝑑 (𝑟 ) = −𝑟𝑑 ′(𝑟 )/𝑑 (𝑟 )
to account for this strength. In the limit case in which the probability of direct transmission is constant,

𝑑 (𝑟 ) = 𝑑 ∈ (0, 1), we have 𝜀𝑑 (𝑟 ) = 0. This corresponds to the assumption made in the first generation of

cultural transmission models (Cavalli-Sforza and Feldman, 1981; Boyd and Richerson, 1985). We refer to

this case as inelastic transmission. Note that perfect transmissionmight be viewed as a limit case of inelastic

transmission in which 𝑑 = 1. When 𝑑 ′(𝑟 ) < 0, 𝜀𝑑 (𝑟 ) > 0 and we have cultural subsitutability, which is at

the heart of the second generation of cultural transmission models (Bisin and Verdier, 2001).
7

Transmission probabilities among heterogamies hold unchanged:

𝑃𝑡
𝑎𝑏

= 𝑃𝑡
𝑏𝑎

= 𝑝𝑡 , 𝑄𝑡
𝑎𝑏

= 𝑄𝑡
𝑏𝑎

= 𝑞𝑡 ,

and transmission probabilities among homogamies become

𝑃𝑡𝑎𝑎 = 𝑑 (𝑝𝑡 ) + (1 − 𝑑 (𝑝𝑡 ))𝑝𝑡 , 𝑄𝑡
𝑎𝑎 = 𝑑 (𝑞𝑡 ) + (1 − 𝑑 (𝑞𝑡 ))𝑞𝑡 ,

𝑃𝑡
𝑏𝑏

= (1 − 𝑑 (1 − 𝑝𝑡 ))𝑝𝑡 , 𝑄𝑡
𝑏𝑏

= (1 − 𝑑 (1 − 𝑞𝑡 ))𝑞𝑡 .

6
We present a simple derivation of this result in Appendix A. Note that Bisin and Verdier (2001) also provide examples of

transmission technologies that exhibit some degree of complementarity between vertical and oblique transmission. However,

since cultural complementarity mechanically induces cultural homogenization, most of the subsequent literature has adopted the

cultural substitutability assumption.

7
As shown in Appendix A, within the framework of those models, the elasticity of cultural substitution is decreasing in the

elasiticity of the parental socialization costs function. Put differently, if parents can increase the direct transmission probability

without increasing the socialization costs toomuch, they will more easily adjust𝑑 in reaction to a change in 𝑟 . Hence, the elasticity
of cultural substitution will be higher.

7



For example, a boy from an 𝑎𝑎 family directly receives trait 𝑎 from his parents with probability 𝑑 (𝑝𝑡 ) and,
if this vertical transmission fails, he has probability 𝑝𝑡 to be influenced by a type-𝑎 role model. This is why

𝑃𝑡𝑎𝑎 = 𝑑 (𝑝𝑡 )+(1−𝑑 (𝑝𝑡 ))𝑝𝑡 . A boy from a𝑏𝑏 family will acquire trait 𝑎 if the vertical socialization stage fails,

which occurs with probability 1−𝑑 (1−𝑝𝑡 ), and he picks a type-𝑎 role model. Hence, 𝑃𝑡
𝑏𝑏

= (1−𝑑 (1−𝑝𝑡 ))𝑝𝑡 .
𝑄𝑡
𝑎𝑎 and 𝑄

𝑡
𝑏𝑏

are similarly obtained.

2.4 Cultural evolution and steady states

The distribution of traits in a period depends on the proportion of families of different pairs of traits and the

intergenerational transmission in different types of families. Generally, cultural evolution is characterized

by the following system of equations:

𝑝𝑡+1 = 𝜇𝑡𝑎𝑎𝑃
𝑡
𝑎𝑎 + 𝜇𝑡

𝑎𝑏
𝑃𝑡
𝑎𝑏

+ 𝜇𝑡
𝑏𝑎
𝑃𝑡
𝑏𝑎

+ 𝜇𝑡
𝑏𝑏
𝑃𝑡
𝑏𝑏
; (1)

𝑞𝑡+1 = 𝜇𝑡𝑎𝑎𝑄
𝑡
𝑎𝑎 + 𝜇𝑡

𝑎𝑏
𝑄𝑡
𝑎𝑏

+ 𝜇𝑡
𝑏𝑎
𝑄𝑡
𝑏𝑎

+ 𝜇𝑡
𝑏𝑏
𝑄𝑡
𝑏𝑏
. (2)

This system clearly demonstrates that cultural evolution is determined by intergenerational transmission

(𝑃𝑡
𝜃𝜃 ′ and𝑄

𝑡
𝜃𝜃 ′ ) and matching (𝜇𝑡

𝜃𝜃 ′ ), which depend on underlying marital preference and trait distributions

as well as the stable matching scheme.

We consider the evolutionary outcome from any interior initial state (𝑝0, 𝑞0) ∈ (0, 1)2 as 𝑡 → ∞.

When the limits exist, we denote the steady-state masses of type-𝑎 men and women by 𝑝∗ = lim𝑡→∞ 𝑝𝑡

and 𝑞∗ = lim𝑡→∞ 𝑞𝑡 , respectively. The steady state may not be unique and may depend on the initial state.

Below we provide a definition of a stable and an attracting steady state.

Definition 1. Steady state (𝑝∗, 𝑞∗) is stable if for all 𝜀 > 0, there exists 𝛿𝜀 > 0 such that 𝐸 ((𝑝0, 𝑞0), (𝑝∗, 𝑞∗)) <
𝛿𝜀 implies 𝐸 ((𝑝𝑡 , 𝑞𝑡 ), (𝑝∗, 𝑞∗)) < 𝜀 for all 𝑡 > 0, where 𝐸 (𝑥,𝑦) indicates the Euclidean distance between points
𝑥 and𝑦. A steady state is unstable if it is not stable. Steady state (𝑝∗, 𝑞∗) is attracting if there exists 𝜂 > 0, such

that 𝐸 ((𝑝0, 𝑞0), (𝑝∗, 𝑞∗)) < 𝜂 implies lim𝑡→∞(𝑝𝑡 , 𝑞𝑡 ) = (𝑝∗, 𝑞∗). It is globally attracting if 𝜂 = ∞. A steady

state is asymptotically stable if it is stable and attracting. A steady state is globally asymptotically stable if

it is stable and globally attracting; when such a steady state exists, it is the unique steady state. Stable set S
of steady states is a nonsingleton connected set of steady states such that there exists an open neighborhood of

the set (in R2), N ⊇ S, such that for any initial state (𝑝, 𝑞) ∈ N ∩ [0, 1]2, the steady state reached is in the

set S.

3 Special case: Homophilic proposers

We start by characterizing the long-run joint distribution of cultural traits when all agents on the proposing

side of the market are homophilic, which might be viewed as a natural assumption at first sight. Without

loss of generality, we assume that men are proposers so that ℎ𝑚𝑎 = ℎ𝑚𝑏 = 1. We do not make any

assumption on the distribution of preferences among receivers; we consider any (ℎ𝑤𝑎, ℎ𝑤𝑏) ∈ [0, 1]2. We

also show that when all members of a given culture are homophilic (ℎ𝑚𝑎 = ℎ𝑤𝑎 = 1 or ℎ𝑚𝑏 = ℎ𝑤𝑏 = 1), the

8



unique stable matching is identical to the matching obtained when all proposers are homophilic. Hence,

our results also apply to this case.

After a brief description of stable matching (Section 3.1), we address the case of perfect or inelastic

vertical transmission in Section 3.2.
8

3.1 Stable matching

Suppose all men have homophilic preferences: 𝑈𝜃𝜃 > 𝑈𝜃𝜃 ′ for any 𝜃 and 𝜃 ′ ≠ 𝜃 and consider MOSM (i.e.,

men are the proposers in the stable matching algorithm).
9
MOSM is given by mass 𝑞𝑡 of 𝑎𝑎 couples, mass

1 − 𝑝𝑡 of 𝑏𝑏 couples, and mass 𝑝𝑡 − 𝑞𝑡 of 𝑎𝑏 couples if 𝑝𝑡 ⩾ 𝑞𝑡 (Figure 1a); mass 𝑝𝑡 of 𝑎𝑎 couples and mass

1 − 𝑝𝑡 of 𝑏𝑏 couples if 𝑝𝑡 = 𝑞𝑡 (Figure 1b); and mass 𝑝𝑡 of 𝑎𝑎 couples, mass 1 − 𝑞𝑡 of 𝑏𝑏 couples, and mass

𝑞𝑡 − 𝑝𝑡 of 𝑏𝑎 couples if 𝑝𝑡 < 𝑞𝑡 (Figure 1c). This matching pattern is independent of women’s preference

distribution, as long as they find every man to be acceptable.
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Figure 1: Matching and evolution with homophilic proposers under perfect or inelastic vertical transmis-

sion in homogamies

3.2 Cultural evolution

Substituting the values of 𝜇𝑡
𝜃𝜃 ′ that correspond to this stable matching and the values of 𝑃𝑡

𝜃𝜃 ′ and𝑄
𝑡
𝜃𝜃 ′ that

correspond to the benchmark transmission into equations (1) and (2), we get the cultural evolution when

𝑝𝑡 ⩾ 𝑞𝑡 is characterized by the following dynamic system:

𝑝𝑡+1 = 𝑞𝑡 + (𝑝𝑡 − 𝑞𝑡 )𝑝𝑡 ; (3)

𝑞𝑡+1 = 𝑞𝑡 + (𝑝𝑡 − 𝑞𝑡 )𝑞𝑡 . (4)

8
The case of imperfect vertical transmission with cultural substitutability is adressed in Section 5.1.

9
Symmetrically, we could assume that women have homophilic preferences and are the proposers without any consequences

for our results.

9



Here are three observations of the dynamic system. First, from equation (3), 𝑝𝑡+1 ⩽ 𝑝𝑡 for any 𝑝𝑡 ∈ (0, 1].
The equality holds only when either 𝑝𝑡 = 1 or 𝑝𝑡 = 𝑞𝑡 (or both). Second, from equation (4), 𝑞𝑡+1 ⩾ 𝑞𝑡 for

any 𝑞𝑡 ∈ [0, 1). The equality holds only when either 𝑞𝑡 = 0 or 𝑝𝑡 = 𝑞𝑡 (or both). Third, from equations

(3) and (4), 𝑝𝑡+1 ⩾ 𝑞𝑡+1 for any 0 ⩽ 𝑞𝑡 ⩽ 𝑝𝑡 ⩽ 1. The equality holds only when 𝑝𝑡 = 𝑞𝑡 . Hence, for

any initial state (𝑝0, 𝑞0) that satisfies 0 ⩽ 𝑞0 ⩽ 𝑝0 ⩽ 1 with either the first or the last inequality being

strict or both (the southeast triangle in Figure 1d without the point (1, 0)), lim𝑡→∞ 𝑝𝑡 = lim𝑡→∞ 𝑞𝑡 = 𝑟 , for

some 𝑟 ∈ (0, 1). The dynamic system in the case of 𝑝𝑡 < 𝑞𝑡 is symmetric to that in the case of 𝑝𝑡 > 𝑞𝑡

(the northwest triangle in Figure 1d without the point (0, 1)). Note that {(𝑟, 𝑟 ) |𝑟 ∈ (0, 1)} constitutes a
stable set of steady states in the sense that perturbations from a steady state in this set may result in a

different steady state, but the new steady state falls in the set of steady states. These observations lead to

the following characterization of steady states when all proposers are homophilic.

Lemma 1. Suppose all proposers are homophilic and vertical transmission is perfect in homogamies. For any

interior initial state (𝑝0, 𝑞0), cultural evolution (𝑝𝑡 , 𝑞𝑡 ) converges to (𝑟, 𝑟 ) for some 𝑟 ∈ (0, 1); in other words,

the set of steady states, {(𝑟, 𝑟 ) |𝑟 ∈ (0, 1)}, forms a stable set.

Lemma 1 demonstrates that the dynamic system converges to steady states in which both types coexist

in both genders and the distributions of types are balanced across genders. Hence, we have cultural het-

erogeneity (coexistence of both cultures) as the long-run outcome when all proposers are homophilic. The

rationale is as follows. With homophilic proposers, the proportion of homogamies in each trait is deter-

mined by the short side of the marriage market (see Figure 1). This creates a tendency toward a balanced

cultural distribution between sexes, which guarantees that people will maintain their legacies through ho-

mogamies. However, there is no tension between the two types in cultural transmission. Therefore, the

dynamic can reach any steady state with a balanced sex ratio in traits.

In addition, consider the case in which one cultural group is homophilic. All type-𝑎 members———men

and women———are homophilic: ℎ𝑚𝑎 = ℎ𝑤𝑎 = 1. We do not make specific assumptions regarding the

preference distribution of trait 𝑏: (ℎ𝑚𝑏, ℎ𝑤𝑏) ∈ [0, 1]2. This configuration represents the case in which a

culture or religion (without loss of generality, trait 𝑎) strongly opposes intermarriage. The unique stable

matching is identical to the one obtained when all proposers are homophilic (see Section 3.1). To see this,

it is sufficient to note that since all type-𝑎men and women are homophilic, in any stable matching as many

𝑎𝑎 couples as possible must be formed such that the mass of 𝑎𝑎 couples is min{𝑝𝑡 , 𝑞𝑡 }. In such a case, the

long-run steady state will be characterized by cultural heterogeneity (see Lemma 1).

Lemma 2. Suppose vertical transmission is perfect in homogamies. If all members of at least one cultural

group are homophilic, for any interior initial state, cultural evolution (𝑝𝑡 , 𝑞𝑡 ) converges to (𝑟, 𝑟 ) for some

𝑟 ∈ (0, 1); in other words, {(𝑟, 𝑟 ) |𝑟 ∈ (0, 1)} forms a stable set.

Finally, consider that vertical transmission in homogamies is imperfect (the probability that parents

directly transmit their trait is lower than one) but inelastic (this probability is independent of the distri-

bution of traits), i.e., 𝑑 (𝑟 ) = 𝑑 ∈ (0, 1]. Results obtained under perfect vertical transmission generalize to

this case. The following proposition offers the most general claim.
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Proposition 1. Suppose vertical transmission is either perfect or inelastic in homogamies. If all proposers are

homophilic or all members of one cultural group are homophilic, {(𝑟, 𝑟 ) |𝑟 ∈ (0, 1)} forms a stable set.

Hence, when the proportion of homogamies in each trait is determined by the short side of the market,

even a small advantage for homogamies in the transmission process (a small 𝑑) is sufficient to guarantee

the coexistence of the two cultural groups at the stable steady state.
10

4 Perfect or inelastic vertical transmission in homogamies

In this section, we relax the assumption that all proposers are homophilic (or all members of a given cul-

ture are homophilic). To identify the consequences of having heterophilic proposers, we will first use the

extreme case in which all proposers are heterophilic (Section 4.1). Then, we use generic marital preference

distributions to demonstrate that cultural homogeneity is the generic long-run outcome as long as a frac-

tion of proposers (even small) is heterophilic (Section 4.2). Finally, we use this result to discuss in Section

4.3 the consequences of having an unbalanced distribution of marital preferences between sexes.

4.1 Heterophilic proposers

Suppose men have heterophilic preferences that favor heterogamies: 𝑈𝜃𝜃 < 𝑈𝜃𝜃 ′ for any 𝜃 and 𝜃 ′ ≠ 𝜃 .

Again, we consider MOSM, which is independent of women’s preference distribution. Stable matching is

given by mass 1−𝑝𝑡 of 𝑏𝑎 couples, mass 1−𝑞𝑡 of 𝑎𝑏 couples, and mass 𝑝𝑡 +𝑞𝑡 −1 of 𝑎𝑎 couples if 𝑝𝑡 +𝑞𝑡 > 1

(Figure 2a); mass 𝑝𝑡 of 𝑎𝑏 couples and mass 𝑞𝑡 of 𝑏𝑎 couples if 𝑝𝑡 + 𝑞𝑡 = 1 (Figure 2b); and mass 𝑝𝑡 of 𝑎𝑏

couples, mass 𝑞𝑡 of 𝑏𝑎 couples, and mass 1 − 𝑝𝑡 − 𝑞𝑡 of 𝑏𝑏 couples if 𝑝𝑡 + 𝑞𝑡 < 1 (Figure 2c).
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Figure 2: Matching and evolution with heterophilic proposers under perfect vertical transmission in ho-

mogamies

10
In Section 5.1 we show that this remains true under imperfect vertical transmission with cultural substitutability.
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For illustrative purposes, we assume perfect vertical transmission. Figure 2d depicts the cultural evo-

lution. When 𝑝𝑡 + 𝑞𝑡 > 1, it is characterized by

𝑝𝑡+1 = (𝑝𝑡 + 𝑞𝑡 − 1) + (2 − 𝑝𝑡 − 𝑞𝑡 )𝑝𝑡 ; (5)

𝑞𝑡+1 = (𝑝𝑡 + 𝑞𝑡 − 1) + (2 − 𝑝𝑡 − 𝑞𝑡 )𝑞𝑡 . (6)

Rearrange the equations:

𝑝𝑡+1 = 𝑝𝑡 + (1 − 𝑝𝑡 − 𝑞𝑡 ) (𝑝𝑡 − 1); (7)

𝑞𝑡+1 = 𝑞𝑡 + (1 − 𝑝𝑡 − 𝑞𝑡 ) (𝑞𝑡 − 1) . (8)

Observe that (i) 𝑝𝑡+1 ⩾ 𝑝𝑡 , and the equality holds only when 𝑝𝑡 = 1; (ii) 𝑞𝑡+1 ⩾ 𝑞𝑡 , and the equality holds

only when 𝑞𝑡 = 1. Hence, lim𝑡→∞ 𝑝𝑡 = lim𝑡→∞ 𝑞𝑡 = 1 for any initial state (𝑝0, 𝑞0) that satisfies 𝑝0+𝑞0 > 1.

When 𝑝𝑡 + 𝑞𝑡 = 1, the dynamic system is always in a steady state. The dynamic system in the case of

𝑝𝑡 + 𝑞𝑡 < 1 (the southwestern triangle in Figure 2d) is given by

𝑝𝑡+1 = (𝑝𝑡 + 𝑞𝑡 )𝑝𝑡 ; (9)

𝑞𝑡+1 = (𝑝𝑡 + 𝑞𝑡 )𝑞𝑡 . (10)

It converges to (0, 0).

Proposition 2. Suppose vertical transmission is either perfect or inelastic in homogamies. If all proposers are

heterophilic, both (0, 0) and (1, 1) are asymptotically stable. Cultural evolution (𝑝𝑡 , 𝑞𝑡 ) converges to (0, 0) if
𝑝0 + 𝑞0 < 1, (𝑝0, 𝑞0) if 𝑝0 + 𝑞0 = 1, and (1, 1) if 𝑝0 + 𝑞0 > 1.

Proposition 2 shows that with heterophilic proposers, in the long run, the entire society consists of

only one type and cultural homogeneity is the robust long-run phenomenon. Importantly, this result

holds regardless of the distribution of receivers’ preferences. Hence, in the statement of Proposition 2, we

do not specify the distribution of receivers’ preferences.
11

The result directly comes from the nature of

the stable matching. As shown in Figure 2, when all proposers are heterophilic, as many heterogamous

couples as possible are formed. Hence, only a residual fraction of couples are homogamies and those

homogamies are composed of spouses who belong to the majority culture.
12

Since homogamies have a

better cultural transmission technology than heterogamies, this induces an evolutionary advantage for the

majority. Hence, in the long run, the majority drives out the minority because the majority type manages

to keep a fraction of homogamies due to sheer population size.

11
Note that the result also does not depend on the transmission technology in homogamies. In the proof of Proposition 2, the

case with imperfect vertical transmission with cultural substitutability is also considered. For the general discussion on imperfect

vertical transmission, please refer to Section 5.

12
Type 𝑎 is categorized as the majority type if 𝑝𝑡 +𝑞𝑡 > 1. When this is the case, all homogamies are 𝑎𝑎 couples (see Figure 2).
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4.2 Strict mixture of heterophilic and homophilic proposers

Now, we provide the most general setup by allowing both the populations of men and women to have a

strict mixture of homophilic and heterophilic preferences. We allow the proportion of homophilic prefer-

ences to differ by cultural type. However, for the sake of clarity and, in particular, to limit the number of

parametric configurations to be considered, we make the following assumption. Our subsequent charac-

terization suggests that this assumption is not crucial for the result of long-run cultural homogeneity, but

is made mainly to simplify exposition.

Assumption 1. For (ℎ𝑚𝑎, ℎ𝑚𝑏, ℎ𝑤𝑎, ℎ𝑤𝑏) ∈ (0, 1)4,

ℎ𝑤𝑏

ℎ𝑤𝑎

=
ℎ𝑚𝑏

ℎ𝑚𝑎

=: 𝜏 ∈ (0, 1]; (11)

ℎ𝑤𝑏

ℎ𝑚𝑏

=
ℎ𝑤𝑎

ℎ𝑚𝑎

=: 𝜌 ∈ (0, 1] . (12)

According to equation (11), the ratio of the probabilities of being homophilic conditional on belonging

to cultural group 𝑎 rather than 𝑏 is independent of gender. In a similar spirit, equation (12) implies that

the ratio of the probabilities of being homophilic conditional on being a woman rather than a man is

independent of cultural trait. The assumptions 𝜏 ⩽ 1 and 𝜌 ⩽ 1 are made without loss of generality. They

imply that, all else equal, the probability to be homophilic is higher for men and for individuals who belong

to group 𝑎 (culture 𝑎 is less tolerant of intermarriage than culture 𝑏).

The full characterization of stable matching (into nine cases) is relegated to Appendix C.2. In Figure

3, we provide a graphic description of the stable matching for the special case in which all receivers are

homophilic (ℎ𝑤𝑎 = ℎ𝑤𝑏 = 1). This case illustrates important (and general) features of the matching when

the population of proposers is mixed. For very unbalanced cultural distribution between sexes———cases (a)

and (e)———the stable matching looks like the one obtained when all proposers are homophilic (Figure 1)

such that the mass of homogamies is determined by the short side of the market in each trait. However,

for more balanced cultural distributions———cases (b) and (d)———the majority manages to preserve a relatively

larger fraction of homogamies, as in the case in which all proposers are heterophilic (Figure 2a and 2c).
13

As we will see, this creates an evolutionary advantage for the majority and this advantage (even if it is

small) will be sufficient for the majority to drive out the minority.

Figures 4a and 4b illustrate the phase diagrams for the cultural evolution under MOSM and WOSM,

respectively. In Appendix C.3, we provide the formal construction of the phase diagrams. In these figures,

the 𝑝𝑝 and 𝑞𝑞 curves, respectively, correspond to the stationary locus of 𝑝𝑡 and 𝑞𝑡 . As shown in these

figures———and Proposition 3 states that this is a general result———under either matching scheme, we have

two stable steady states (0, 0) and (1, 1), and one unstable steady state (1/2, 1/2). By extension, even if

we allow for a selection of stable matching between MOSM and WOSM (for example, by median stable

matching), cultural evolution retains the same stable steady states.

13
For instance, in case (b) there are relatively few individuals of type 𝑎 in the whole population such that some heterophilic 𝑏

men will be matched with type 𝑏 women.
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Figure 3: Stable matching with mixed proposing men and homophilic receiving women, by 𝑞

Note. 𝜋𝑡
𝜃𝑖

is the size of the set 𝑀𝑡
𝜃𝑖

(i.e., the mass of men of type 𝜃 ∈ {𝑎, 𝑏} who belong to preference group 𝑖 ∈ {1, 2} at time 𝑡 ),

so that we have 𝜋𝑡𝑎1
= 𝑝𝑡ℎ𝑚𝑎 , 𝜋

𝑡
𝑏1

= (1 − 𝑝𝑡 )ℎ𝑚𝑏 , 𝜋
𝑡
𝑎2

= 𝑝𝑡 (1 − ℎ𝑚𝑎), and 𝜋𝑡𝑏2
= (1 − 𝑝𝑡 ) (1 − ℎ𝑚𝑏 ).

Proposition 3. Suppose there is a strict mixture of homophilic and heterophilic proposers, and vertical trans-

mission is either perfect or inelastic in homogamies. Both (0, 0) and (1, 1) are asymptotically stable. Cultural

distribution (𝑝𝑡 , 𝑞𝑡 ) converges to (0, 0) if 𝑝0 + 𝑞0 < 1, (1, 1) if 𝑝0 + 𝑞0 > 1, and (1/2, 1/2) if 𝑝0 + 𝑞0 = 1.

Hence, in the presence of mixed proposers, regardless of the preferences of receivers, the long-run

distribution of preferences is fully homogeneous.
14

As detailed above, this comes from the fact that the

presence of heterophilic proposers induces an evolutionary advantage for the majority when the cultural

distribution becomes sufficiently balanced between sexes. Then, regardless of the intensity of homophilic

preferences within each group (i.e., the values of ℎ𝑤𝑎, ℎ𝑤𝑏, ℎ𝑚𝑎, ℎ𝑚𝑏 ), the majority ultimately drives out the

minority.
15

Put differently, as long as there is a positive mass of heterophilic men and women for every

cultural type, regardless of the stable matching scheme, generically, cultural homogeneity is the long-run

stable outcome. Even more strikingly, the respective basins of attraction of the steady states (0, 0) and
(1, 1) are exactly the same under WOSM and MOSM even if, for some (𝑝𝑡 , 𝑞𝑡 ), the two mechanisms do not

result in the same stable matching.

4.3 Gender-differential distributions of marital preferences

Propositions 1 and 3 illustrate the crucial role played by marital preferences among proposers in shaping

the long-run cultural composition of the population. If all proposers are homophilic, cultural diversity is

preserved in the long run (Proposition 1); this is no longer the case when there are some heterophilic pro-

posers (Proposition 3). This result has striking implications when the distributions of marital preferences

14
Except in the knife-edge case in which 𝑝0 = 1−𝑞0. However, in this case, any small perturbation will induce a convergence

to a homogeneous steady state.

15
Note that, whatever those values are, the basin of attraction of (0, 0) is {(𝑝𝑡 , 𝑞𝑡 ) ∈ [0, 1]2 : 𝑝𝑡 + 𝑞𝑡 < 1} and the basin of

attraction of (1, 1) is {(𝑝𝑡 , 𝑞𝑡 ) ∈ [0, 1]2 : 𝑝𝑡 + 𝑞𝑡 > 1}.

14
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(b) WOSM

Figure 4: Evolution with mixed proposers and receivers under perfect vertical transmission in homogamies

Note. ℎ𝑚𝑎 = 0.4, 𝜏 = 0.6 and 𝜌 = 0.4.

differ between the two sides of the matching market and, in particular, when one side is fully homophilic

while some individuals from the other side are heterophilic. In this case, the choice of MOSM orWOSM, by

determining which side of the market will play the role of proposers, might have dramatic consequences

for the long-run distribution of cultural traits. For example, homophilic proposing men would result in

cultural heterogeneity while heterophilic proposing women in the same environment would instead result

in cultural homogeneity.
16

Below, we show the additional result that because of this feature, short-run

optimal stable matching may lead to a long-run loss (Section 4.3.1). Then we discuss the role played by

the presence of a biased sex ratio (Section 4.3.2) on cultural evolution, as it might influence the selection

of one particular stable matching.

4.3.1 Short-run optimal stable matching may lead to long-run loss

Since men are proposers under MOSM and women are proposers under WOSM, Propositions 1 and 3

imply that when one side is homophilic and the other side is not, the long-run distribution of cultural

traits depends on the selected stable matching. This result compels us to reassess the optimality of MOSM

and WOSM from a dynamic point of view. By definition, the distribution of cultural traits being given,

all men prefer MOSM to WOSM and the reverse is true for women. However, the cultural transformation

induced by the choice of MOSM might lead to a situation in which men get a lower expected utility than

if WOSM had been chosen (while the reverse might be true for women).

We formally state this result in Proposition 4 in which we assume that no men are heterophilic but

16
It is interesting to consider the possibility that men are proposing in one cultural group and women are proposing in the

other, but since the outcome may not be MOSM or WOSM, it is beyond the scope of the current analysis.
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Figure 5: Expected payoffs of homophilic men and heterophilic women under MOSM and WOSM

Note. For the illustrations, we use 𝑈𝑎𝑎 = 4, 𝑈𝑏𝑏 = 3, 𝑈𝑎𝑏 = 𝑈𝑏𝑎 = 2, 𝑉 2
𝑎𝑏

= 𝑉 2
𝑏𝑎

= 4, 𝑉 2
𝑏𝑏

= 𝑉 2
𝑎𝑎 = 𝑉 1

𝑎𝑏
= 𝑉 1

𝑏𝑎
= 2, 𝑉 1

𝑎𝑎 = 3, 𝑉 1
𝑏𝑏

= 4,

ℎ𝑤𝑎 = ℎ𝑤𝑏 = 0.5, 𝑝0 = 0.6, and 𝑞0 = 0.8.

some women are. In this proposition, we denote by 𝑉 1
𝜃𝜃 ′ (resp., 𝑉

2
𝜃𝜃 ′ ) the utility of a homophilic (resp.,

heterophilic) type-𝜃 woman matched with a type-𝜃 ′ man.

Proposition 4. Suppose all men are homophilic, there is amixture of homophilic and heterophilic women, and

vertical transmission is either perfect or inelastic in homogamies. When 𝑝0 +𝑞0 > 1, men are strictly better off

(resp., worse off) in the long run under MOSM than under WOSM if and only if𝑈𝑎𝑎 < 𝑈𝑏𝑏 (resp.,𝑈𝑎𝑎 > 𝑈𝑏𝑏);

and women are strictly better off (resp., worse off) in the long run under WOSM than under MOSM if and only

if ℎ𝑤𝑎𝑉
1
𝑎𝑎 + (1 − ℎ𝑤𝑎)𝑉 2

𝑎𝑎 > ℎ𝑤𝑏𝑉
1
𝑏𝑏

+ (1 − ℎ𝑤𝑏)𝑉 2
𝑏𝑏

(resp., ℎ𝑤𝑎𝑉
1
𝑎𝑎 + (1 − ℎ𝑤𝑎)𝑉 2

𝑎𝑎 < ℎ𝑤𝑏𝑉
1
𝑏𝑏

+ (1 − ℎ𝑤𝑏)𝑉 2
𝑏𝑏
).

When 𝑝0 + 𝑞0 < 1, the strict inequality signs in the necessary and sufficient conditions are reversed.17

Figure 5 illustrates a case in which men under MOSM and women under WOSM are strictly better off

in the short run, but are strictly worse off in the long run due to the induced evolution of the distribution

of traits. To figure out why such a configuration can occur, consider the case where 𝑝0 + 𝑞0 > 1 and

𝑈𝑎𝑎 > 𝑈𝑏𝑏 . As type-𝑎 individuals are initially in the majority, the cultural distribution converges to (1, 1)
under WOSM. Hence, in the long run, the utility of a man will be 𝑈𝑎𝑎 . On the contrary, since under

MOSM all proposers are homophilic, the cultural distribution converges to a steady state (𝑟, 𝑟 ) where
cultural diversity is preserved. Hence, in the long run, there is a positive mass of 𝑏𝑏 couples such that, in

expectation, the utility of a man will be lower than𝑈𝑎𝑎 .

17
When 𝑝0 + 𝑞0 = 1, the steady state under WOSM is (𝑝𝑤 , 𝑞𝑤) = (𝑝0, 𝑞0), so men’s and women’s average payoffs involve

𝑈𝑎𝑏 , 𝑈𝑏𝑎 , 𝑉
1
𝑎𝑏
, 𝑉 2

𝑎𝑏
, 𝑉 1

𝑏𝑎
and 𝑉 2

𝑏𝑎
; the steady state under MOSM is (𝑝𝑚, 𝑞𝑚) such that 𝑝𝑚 = 𝑞𝑚 , but there is no definitive relation

between (𝑝𝑚, 𝑞𝑚) and (𝑝0, 𝑞0). All in all, when 𝑝0 + 𝑞0 = 1, there is no clean condition to characterize when a gender is strictly

better off (or worse off) under MOSM than under WOSM in the long run.

16



4.3.2 Biased sex ratio

We demonstrate how a biased sex ratio influences equilibrium matching and, in turn, the cultural trans-

mission process. We assume that at the beginning of each time 𝑡 , and before matching takes place, a mass

𝜆 of adult males arrive in the society. Those incoming men do not have a well-defined culture. They

randomly pick a cultural model within the population of adult males already present in the society and

adopt the trait of this role model with probability one. Hence, after this arrival, there is a mass 𝑝𝑡 (1 + 𝜆)
(resp., (1 − 𝑝𝑡 ) (1 + 𝜆)) of type-𝑎 men (resp., type-𝑏 men) in the society. We focus on the case in which

men have homophilic preferences (ℎ𝑚𝑎 = ℎ𝑚𝑏 = 1) and not all women have homophilic preferences

((ℎ𝑤𝑎, ℎ𝑤𝑏) ∈ [0, 1)2).
Ashlagi et al. (2017) show that even the slightest imbalance between the number of individuals on

either side of the market can yield a unique stable matching that is favorable to individuals on the short

side. We establish that this is indeed the case in our setting. More specifically, even for an arbitrarily

small 𝜆, there exists a unique stable matching in which as many women as possible receive their preferred

matching. Hence, compared with the benchmark case (𝜆 = 0), this matching is close to WOSM and might

be in sharp contrast to MOSM if the preferences of women are very different from those of men. Lemma

3 strikingly illustrates this feature in the special case in which all women are heterophilic.
18

In Appendix

D.1, we describe the unique stable matching for any (ℎ𝑤𝑎, ℎ𝑤𝑏) ∈ [0, 1)2.

Lemma 3. Define the following functions: 𝜙1(𝑝) := 1− (1 + 𝜆)𝑝 and 𝜙2(𝑝) := (1 + 𝜆) (1− 𝑝). In the market

with mass 𝑝 (1+𝜆) of type-𝑎men, mass (1−𝑝) (1+𝜆) of type-𝑏 men, mass 𝑞 of type-𝑎 women, and mass (1−𝑞)
of type-𝑏 women, the unique stable matching 𝜇 = (𝜇𝑎𝑎, 𝜇𝑎𝑏, 𝜇𝑏𝑎, 𝜇𝑏𝑏) with homophilic men and heterophilic

women is

𝜇 =


(0, 𝑝 (1 + 𝜆), 𝑞, 1 − 𝑞 − 𝑝 (1 + 𝜆)) if 𝑞 < 𝜙1(𝑝),
(0, 1 − 𝑞, 𝑞, 0) if 𝑞 ∈ [𝜙1(𝑝), 𝜙2(𝑝)] ,
(𝑞 − (1 + 𝜆) (1 − 𝑝), 1 − 𝑞, (1 + 𝜆) (1 − 𝑝), 0) if 𝑞 > 𝜙2(𝑝) .

We now assess the consequences of gender imbalance on cultural evolution. For illustrative purposes,

we only consider the case of perfect vertical transmission. The results can be generalized to the case of

inelastic vertical transmission. From Lemma 3, we get
19

𝑝𝑡+1 =


𝑝𝑡

[
𝑞𝑡 + 𝑝𝑡 (1 + 𝜆)

]
if 𝑞𝑡 < 𝜙1(𝑝𝑡 ),

𝑝𝑡 if 𝑞𝑡 ∈
[
𝜙1(𝑝𝑡 ), 𝜙2(𝑝𝑡 )

]
,

𝑝𝑡 + (1 − 𝑝𝑡 )
[
𝑞𝑡 − (1 + 𝜆) (1 − 𝑝𝑡 )

]
if 𝑞𝑡 > 𝜙2(𝑝𝑡 ),

(13)

and

𝑞𝑡+1 =


𝑞𝑡

[
𝑞𝑡 + 𝑝𝑡 (1 + 𝜆)

]
if 𝑞𝑡 < 𝜙1(𝑝𝑡 ),

𝑞𝑡 if 𝑞𝑡 ∈
[
𝜙1(𝑝𝑡 ), 𝜙2(𝑝𝑡 )

]
,

𝑞𝑡 + (1 − 𝑞𝑡 )
[
1 − (1 + 𝜆) (1 − 𝑝𝑡 )

]
if 𝑞𝑡 > 𝜙2(𝑝𝑡 ) .

(14)

18
According to Lemma 3, as gender imbalance vanishes (𝜆 → 0), 𝜇 → (0, 𝑝, 𝑞, 1−𝑝 −𝑞) when 𝑞 < 1−𝑝 and 𝜇 → (𝑝 +𝑞−1, 1−

𝑞, 1 − 𝑝, 0) when 𝑞 > 1 − 𝑝 . Hence, the realized matching is very similar to the one obtained in the absence of gender imbalance

when proposers are heterophilic (see Figure 2) even though, here, all men are homophilic and we consider MOSM.

19
For the sake of clarity, in themain text we only present the cultural dynamics for the case inwhich all women are heterophilic

(ℎ𝑤𝑎 = ℎ𝑤𝑏 = 0). In Appendix D.2 we present the dynamics for any (ℎ𝑤𝑎, ℎ𝑤𝑏 ) ∈ [0, 1)2.

17
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(a) ℎ𝑤𝑎 = ℎ𝑤𝑏 = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Proportion of type a in men's population
P
ro
po
rt
io
n
of
ty
pe
a
in
w
om
en
's
po
pu
la
tio
n

pp

ϕ1(p)

ϕ2(p)

(b) 1 > ℎ𝑤𝑎 = ℎ𝑤𝑏 > 0
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(c) 1 > ℎ𝑤𝑎 > ℎ𝑤𝑏 > 0

Figure 6: Evolution under perfect vertical transmission in homogamies and gender imbalance

Note. ℎ𝑚𝑎 = ℎ𝑚𝑏 = 1 in panel (a), 𝜆 = 0.3 and ℎ𝑤𝑎 = ℎ𝑤𝑏 = 0.2 in panel (b) and ℎ𝑤𝑎 = 0.3 and ℎ𝑤𝑏 = 0.15 in panel (c).

Cultural evolution in the case in which all women are heterophilic is summarized in Proposition 5a and

illustrated in Figure 6a. When 𝑞𝑡 ∈
[
𝜙1(𝑝𝑡 ), 𝜙2(𝑝𝑡 )

]
, there are more type-𝑎 men than type-𝑏 women and

more type-𝑏 men than type-𝑎 women. Hence, all women can be matched with a man of the opposite type.

As a consequence, there is no homogamous couple and the initial distribution of traits perpetuates over

time. Outside this region, (0, 0) and (1, 1) are asymptotically stable. Specifically, for any (𝑝0, 𝑞0) such that

𝑞0 < 𝜙1(𝑝0) (resp., 𝑞0 > 𝜙2(𝑝0)), the distribution of cultural traits converges toward (0, 0) (resp., (1, 1)),
as in the case in which proposers are heterophilic (Section 4.1).

Proposition 5 (Gender imbalance). Suppose there are more proposers than receivers (𝜆 > 0) and all proposers

are homophilic (ℎ𝑚𝑎 = ℎ𝑚𝑏 = 1). Also vertical transmission is perfect in homogamies.

(a) If ℎ𝑤𝑎 = ℎ𝑤𝑏 = 0 (receivers are heterophilic), then
{
(𝑝𝑡 , 𝑞𝑡 ) ∈ [0, 1]2 : 𝑞𝑡 ∈

(
𝜙1(𝑝𝑡 ), 𝜙2(𝑝𝑡 )

)}
is a

stable set. Moreover, both (0, 0) and (1, 1) are asymptotically stable, and (𝑝𝑡 , 𝑞𝑡 ) converges to (1, 1) if
𝑞0 < 𝜙1(𝑝0) and (0, 0) if 𝑞0 > 𝜙2(𝑝0).

(b) If 1 > ℎ𝑤𝑎 = ℎ𝑤𝑏 > 0, then
{
(𝑝𝑡 , 𝑞𝑡 ) ∈ [0, 1]2 : 𝑞𝑡 ∈

(
𝜙1(𝑝𝑡 ), 𝜙2(𝑝𝑡 )

)
and 𝑞𝑡 = 𝑝𝑡

}
is a stable set and

the steady states (0, 0) and (1, 1) are attracting.

(c) If 1 > ℎ𝑤𝑎 > ℎ𝑤𝑏 > 0, then there are three steady states: (𝑟, 𝑟 ), where 𝑟 =
1−ℎ𝑤𝑎

2(1−ℎ𝑤𝑎 )+𝜆 < 1/2, which is

unstable, and (0, 0) and (1, 1), which are attracting.

Proposition 5 also summarizes the cases in which not all receivers are heterophilic. The dynamic

system for the case in which 1 > ℎ𝑤𝑎 = ℎ𝑤𝑏 > 0 (Proposition 5b) is illustrated in Figure 6b and the case in

which 1 > ℎ𝑤𝑎 > ℎ𝑤𝑏 > 0 (Proposition 5c) is illustrated in Figure 6c. In all three configurations, culturally

homogeneous steady states (0, 0) and (1, 1) are attracting. Hence, even for arbitrarily small values of 𝜆,

cultural evolution is radically different from the 𝜆 = 0 case. In particular, under MOSM, when 𝜆 = 0 the

steady states are characterized by cultural diversity (see Proposition 1); when 𝜆 is positive but very close

18



to 0, the stable steady states essentially correspond to the ones obtained under WOSM with heterophilic

proposers (see Proposition 2) and are characterized by cultural homogeneity.

Grosjean and Khattar (2019) and Baranov et al. (2021) show that a male-biased sex ratio, which orig-

inated from the British policy of sending convicts to Australia, had persistent effects on the culture, and

in particular on gender role attitudes or the extent of masculine norms, even though gender balance was

restored after the transportation of convicts stopped. Gay (2019); Teso (2019); and Alix-Garcia et al. (2020)

reach a similar conclusion with respect to the impact of a female-biased sex ratio caused byWorld War I in

France, the transatlantic slave trade in Sub-Saharan Africa, and theWar of the Triple Alliance in Paraguay,

respectively. The introduction of a biased sex ratio in our model offers a new channel of persistence of

historical gender imbalance on culture: Imbalanced sex ratio influences the matching pattern, which, in

turn, impacts the intergenerational transmission process and finally the long-run distribution of cultural

traits.

To see how temporary gender imbalance can lead to path-dependence phenomena, consider two coun-

tries that differ in sex ratio only. In both countries, men have homophilic preferences while women have

mixed preferences (we assume 1 > ℎ𝑤𝑎 > ℎ𝑤𝑏 > 0 but we could have assumed the opposite ordering

of ℎ𝑤𝑎 and ℎ𝑤𝑏 ) and MOSM is selected. There is no gender imbalance in Country 1 (𝜆1 = 0), but there

are more men than women in Country 2 (𝜆2 > 0). The initial cultural distribution (𝑝0, 𝑞0) is the same in

both countries, and we assume, without loss of generality, that in Country 2, (𝑝0, 𝑞0) belongs to the basin
of attraction of (1, 1) (see Figure 6c). Under these assumptions, in Country 1, the cultural distribution

converges to a point on the first diagonal (𝑝∗1, 𝑞∗1) = (𝑟 ∗, 𝑟 ∗) (cultural diversity); in Country 2, it converges

to (𝑝∗2, 𝑞∗2) = (1, 1) (cultural homogeneity). If, later in time, gender imbalance disappears in Country 2 so

that 𝜆2 = 𝜆1 = 0, since (1, 1) is on the first diagonal, it would not have any consequence for the cultural

composition of Country 2. In the end, even if initial states were the same in the two countries, temporary

differences in sex ratio have a long-lasting impact on the cultural composition of each country. Figure 7

illustrates this phenomenon.

5 Imperfect vertical transmission in homogamies

In this section, we consider imperfect vertical transmission in homogamies that is culturally substitutable

with oblique transmission and general marital preference distributions.

Recall that imperfect vertical transmission with cultural substitutability means that the probability of

a direct transmission 𝑑 (𝑟 ) is strictly decreasing in 𝑟 , the share of the transmitted trait in the same gender

population.

Given the transmission technology and equations (1) and (2), cultural evolution is characterized by

rearrangement of equations (1) and (2):

𝑝𝑡+1 = 𝑝𝑡 + 𝜇𝑡𝑎𝑎𝑑 (𝑝𝑡 ) (1 − 𝑝𝑡 ) − 𝜇𝑡
𝑏𝑏
𝑑 (1 − 𝑝𝑡 )𝑝𝑡 ; (15)

𝑞𝑡+1 = 𝑞𝑡 + 𝜇𝑡𝑎𝑎𝑑 (𝑞𝑡 ) (1 − 𝑞𝑡 ) − 𝜇𝑡
𝑏𝑏
𝑑 (1 − 𝑞𝑡 )𝑞𝑡 . (16)

An interpretation of the transition is as follows. Each man is subject to societal impact through oblique
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Figure 7: Temporary biased sex ratio leads to path dependence

Note. For the illustrations, we use ℎ𝑤𝑎 = 0.3, ℎ𝑤𝑏 = 0.15, 𝑝0 = 0.5, 𝑞0 = 0.3 in both countries. In Country 1, 𝜆 = 0. In Country

2, 𝜆 = 0.01 before date 𝑡 = 4 and 𝜆 = 0 for all 𝑡 ⩾ 4.

transmission and possesses trait 𝑎 with probability 𝑝𝑡 , except that the probability increases by𝑑 (𝑝𝑡 ) (1−𝑝𝑡 )
when vertical transmission (of trait 𝑎) is successful in 𝑎𝑎 homogamies, and the probability decreases by

𝑑 (1 − 𝑝𝑡 )𝑝𝑡 when vertical transmission (of trait 𝑏) is successful in 𝑏𝑏 homogamies.

In the rest of the section, we will start with the cases with uniformly homophilic proposers or an

entirely homophilic cultural group. We then consider the case in which each cultural group has the same

proportion of homophilic agents, and the case in which different cultural groups differ in their proportion

of homophily.

5.1 Homophilic proposers or cultural groups

Assume all proposers are homophilic. Suppose 𝑝𝑡 ⩾ 𝑞𝑡 . Using the properties of the stable matching (see

Figure 1a), cultural evolution is characterized by

𝑝𝑡+1 − 𝑝𝑡 = 𝑞𝑡𝑑 (𝑝𝑡 ) (1 − 𝑝𝑡 ) − (1 − 𝑝𝑡 )𝑑 (1 − 𝑝𝑡 )𝑝𝑡 ;

𝑞𝑡+1 − 𝑞𝑡 = 𝑞𝑡𝑑 (𝑞𝑡 ) (1 − 𝑞𝑡 ) − (1 − 𝑝𝑡 )𝑑 (1 − 𝑞𝑡 )𝑞𝑡 .

We show that only (𝑝∗, 𝑞∗) such that 𝑝∗ = 𝑞∗ := 𝑟 can be a steady state, and in addition, 𝑟 satisfies

𝑟 (1 − 𝑟 ) [𝑑 (𝑟 ) − 𝑑 (1 − 𝑟 )] = 0.

Hence, when 𝑑 (·) is strictly decreasing, the solutions are 0, 1/2, and 1. This equation also clarifies that

when homogamies have inelastic vertical transmission, i.e., 𝑑 (𝑟 ) = 𝑑 for all 𝑟 , any (𝑟, 𝑟 ) is a steady state

(Proposition 1). To establish the global asymptotical stability of (1/2, 1/2), we use cultural substitutability
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Figure 8: Cultural evolution with homophilic proposers under imperfect vertical transmission in ho-

mogamies

and find a Lyapunov function.

Proposition 6. Suppose all proposers are homophilic or at least one cultural group is homophilic, and imper-

fect vertical transmission is culturally substitutable in homogamies. There is a unique globally asymptotically

stable steady state (1/2, 1/2).

Cultural evolution in this case is illustrated in Figure 8. To explain this result, first note that, even

under imperfect vertical transmission with cultural substitutability, homogamies have a more effective

transmission technology than heterogamies. Hence, the tendency toward a balanced cultural distribution

between sex is preserved (starting near the northwest or the southeast corner of Figure 8, the cultural

distribution tends to the 𝑞𝑡 = 𝑝𝑡 line). However, compared to the previous case, cultural substitutability

creates an additional force in favor of cultural diversity. If 𝑝𝑡 is close to 𝑞𝑡 and there are fewer type-𝑎

individuals in the whole population (𝑝𝑡 + 𝑞𝑡 < 1), the probability of a direct transmission is larger for 𝑎𝑎

families than for 𝑏𝑏 families. Hence, trait 𝑎 spreads over time within both populations of men and women

and (𝑝𝑡 , 𝑞𝑡 ) will converge to (1/2, 1/2).

5.2 Cultural groups of the same proportion of homophily

Consider the configuration in which there is a mixture of homophilic and heterophilic individuals but the

proportion of homophily is the same in each cultural group. This corresponds to the case in which 𝜏 = 1

and 𝜌 can take any value between 0 and 1 (i.e., ℎ𝑚𝑎 = ℎ𝑚𝑏 = ℎ𝑚 and ℎ𝑤𝑎 = ℎ𝑤𝑏 = ℎ𝑤). Recall that we

define the elasticity of cultural substitution, 𝜀𝑑 (𝑟 ) = −𝑟𝑑 ′(𝑟 )/𝑑 (𝑟 ), in Section 2.3. It measures the relative

responsiveness of familial vertical transmission and societal oblique transmission to population change.

A higher elasticity indicates that vertical transmission is less effective on the margin under a population
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increase and more effective on the margin under a population decrease. In other words, higher elasticity

of cultural transmission substitution implies that a minority population has a higher effectiveness with

their vertical transmission. We will show that the elasticity of cultural substitution crucially determines

whether the symmetric culturally heterogeneous steady state (1/2, 1/2) is stable.
For subsequent results, we assume that the elasticity cannot take extremely high values to avoid the

probability of a vertical transmission overreacting to small changes in the cultural composition of the

society:

Assumption 2. 1
𝜀𝑑 (1/2) >

1/2·𝑑 (1/2)
1−1/2·𝑑 (1/2) .

Assumption 2 prevents the dynamic system from exhibiting too much oscillation, which prevents it

from convergence. Because 𝑑 (1/2) ⩽ 1, the right-hand side of the inequality is at most 1. The inequality

is easily satisfied. For example, it holds for 𝑑 (𝑟 ) = (1 − 𝑟 )𝜂 for any 𝜂 > 0.

Proposition 7. Suppose Assumption 2 is satisfied. Suppose mass ℎ𝑚 ∈ (0, 1) of proposers are homophilic

and imperfect vertical transmission is culturally substitutable in homogamies. The steady state (1/2, 1/2) is
asymptotically stable if and only if the likelihood ratio of homophily is strictly higher than the inverse of the

elasticity of cultural substitution at 1/2:

ℎ𝑚

1 − ℎ𝑚
>

1

𝜀𝑑 (1/2)
. (17)

When there is mass ℎ𝑤 ∈ (0, 1] of homophilic receivers, only (𝑟, 𝑟 ), where 0 < 𝑟 < 1, can be a steady state.

When receivers are all heterophilic, (0, 0) and (1, 1) are asymptotically stable steady states.

We show that only states with equal masses of type-𝑎 men and women, (𝑟, 𝑟 ), can be steady states. By

symmetry, (1 − 𝑟, 1 − 𝑟 ) is a steady state when so is (𝑟, 𝑟 ), and they also share the stability property. Of

those steady states, (1/2, 1/2) can be thought of as a special case———the state in which there is neither a

dominant trait nor a dominated trait. In other states, there is asymmetry that results in the identification of

majority and minority groups. Two forces contribute to make (1/2, 1/2) asymptotically stable: homophily

and cultural substitutability. The role played by these two forces has already been discussed in Section 3.2,

in which we show that, under imperfect cultural transmission, (1/2, 1/2) is the unique long-run outcome

when all proposers are homophilic. The inequality (17) in Proposition 7 refines this result, by showing

that a full symmetry between the two cultural groups is likely to be a long-run outcome if the proportion

of homophilic proposers is sufficiently large and/or cultural substitutability between oblique and vertical

socialization is sufficiently strong.

To better illustrate the results of Proposition 7, it is useful to consider the case 𝑑 (𝑟 ) = (1−𝑟 )𝜂 , for 𝜂 > 0

such that the elasticity of cultural substitution is a constant.
20
In this case, a large proportion———higher than

1/(1+𝜂)———of homophilic proposers results in a unique stable steady state (1/2, 1/2) (Figure 9a) and a small

proportion———lower than 1/(1 + 𝜂)———of homophilic proposers results in two stable steady states (𝑟 ∗, 𝑟 ∗)

20
As shown in Appendix A, 𝑑 (𝑟 ) = (1−𝑟 )𝜂 , for 𝜂 > 0, corresponds to the probability of vertical transmission in a socialization

model a la Bisin and Verdier (2001) assuming a socialization cost function with constant elasticity.
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and (1 − 𝑟 ∗, 1 − 𝑟 ∗) with 𝑟 < 1/2 (Figure 9b). Moreover, 𝑟 ∗ is increasing in ℎ𝑚 .
21

Hence, the size of the

minority group increases with the mass of homophilic proposers such that a society not very tolerant of

intermarriage is likely to be more culturally diverse in the long run. Conversely, in a more tolerant society,

intermarriage tends to accelerate the assimilation of the minority to the dominant culture.
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(a) (1/2, 1/2) stable
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(b) (1/2, 1/2) saddle point

Figure 9: Evolution with a mixture of homophilic and heterophilic proposers under imperfect vertical

transmission in homogamies

Note. ℎ𝑚 = ℎ𝑤 = 0.8 and 𝑑 (𝑟 ) = (1 − 𝑟 )1/2 in panel (a); ℎ𝑚 = ℎ𝑤 = 0.4 and 𝑑 (𝑟 ) = (1 − 𝑟 )1/2 in panel (b).

Let us finally state that since the proportion of homophilic proposers plays a critical role, the choice

of MOSM or WOSM might also have an impact when ℎ𝑚 ≠ ℎ𝑤 . For instance, if 𝑑 (𝑟 ) = (1 − 𝑟 )𝜂 , for 𝜂 > 0,

and ℎ𝑚 > 1
1+𝜂 > ℎ𝑤 , MOSM will induce convergence toward the steady state with symmetric cultural

diversity (1/2, 1/2), while under WOSM, the society will converge toward a situation with a minority and

a majority group. Hence, all of the consequences of gender-imbalanced distributions, discussed in Section

4.3, generalize to the setting with imperfect vertical transmission in homogamies.

5.3 Cultural groups of different proportions of homophily

Suppose now that both cultural groups have heterophilic agents: ℎ𝑚𝑎 = ℎ𝑤𝑎 = ℎ𝑎 ∈ [0, 1), ℎ𝑚𝑏 = ℎ𝑤𝑏 =

ℎ𝑏 ∈ [0, 1). Note that this is a special case of Section 4.2, such that there is no gender difference in

preferences within each cultural group (𝜌 = 1) and culture 𝑎 is less tolerant of intermarriage than culture

𝑏 (𝜏 ∈ (0, 1]). The characterization of stable matching (into six cases) is relegated to Appendix E.4.

Proposition 8. Suppose Assumption 2 is satisfied. Suppose both cultural groups are nonhomophilic and

imperfect vertical transmission is culturally substitutable in homogamies. Only (𝑟, 𝑟 ), where 𝑟 ∈ [0, 1], can

21
When 𝜂 = 1, this 𝑟∗ exactly equals ℎ𝑚 . See Proposition 9 in Online Appendix OA.1.
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(a) ℎ𝑎 = ℎ𝑏 = 0.6
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(b) ℎ𝑎 = 0.7 and ℎ𝑏 = 0.2
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(c) ℎ𝑎 = 0.3 and ℎ𝑏 = 0.15

Figure 10: Evolution under perfect vertical transmission in homogamies and gender imbalance

be a steady state. The steady state (1/2, 1/2) is asymptotically stable if and only if

ℎ𝑎

1 − ℎ𝑎
>

1

𝜀𝑑 (1/2)
.

When type-𝑏 cultural group is heterophilic, (1, 1) is asymptotically stable.

In common with Proposition 7, Proposition 8 highlights the combined role of homophily and cultural

substitutability in the sustainability of a high level of cultural diversity. One substantial difference between

the two propositions is that when the two cultural groups differ in their level of tolerance of intermarriage,

the asymptotic stability of (𝑟, 𝑟 ) does not necessarily ensure the existence of the symmetric equilibrium

(1 − 𝑟, 1 − 𝑟 ).
To illustrate this point, let us consider 𝑑 (𝑟 ) = 1 − 𝑟 .22 In this case, three configurations may arise and

are depicted in Figure 10.
23

If homophilic individuals form the majority of the population (ℎ𝑎 + ℎ𝑏 ⩾ 1),

(1/2, 1/2) is the globally stable steady state such that symmetric diversity is always preserved in the long-

run (Figure 10a). If homophilic individuals are in minority in the whole population (ℎ𝑎 + ℎ𝑏 < 1) but in

the majority within one cultural group (ℎ𝑎 > 1/2 ⩾ ℎ𝑏 ), the steady state with symmetric cultural diversity

(1/2, 1/2) (now locally stable) coexists with another locally stable steady state with asymmetric cultural

diversity (1−ℎ𝑏, 1−ℎ𝑏) in which the cultural group less tolerant of intermarriage (group 𝑎) is the dominant

group (Figure 10b). If both ℎ𝑎 and ℎ𝑏 are lower than 1/2, two locally stable steady states with asymmetric

cultural diversity, (ℎ𝑎, ℎ𝑎) and (1 − ℎ𝑏, 1 − ℎ𝑏) coexist (Figure 10c).
These results confirm that a sufficiently high marital homophily in the entire population allows for

the preservation of cultural diversity. However, when marital preferences are also transmitted across

generations, a high intolerance for intermarriage for one cultural group might be sufficient to maintain

22
As discussed in Appendix A, this transmission probability might be obtained under the usual assumption of quadratic

socialization costs in the cultural transmission model proposed by Bisin and Verdier (2001).

23
Formal results are stated and proven in Online Appendix OA.1 (Proposition 10).
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a high level of diversity. In the configuration depicted in Figure 10b, the basin of attraction of the stable

steady state with symmetric cultural diversity is increasing in ℎ𝑎 , the degree of homophily within the

cultural group which is less tolerant to intermarriage.
24

Hence, such an increase would render more likely

the convergence to (1/2, 1/2). Moreover, when a group cannot transmit a high enough homophilic marital

preference (due to environmental or feasibility constraints), as is the case for group 𝑏 in this configuration,

it may become a remnant minority group (at the stable steady state (1−ℎ𝑏, 1−ℎ𝑏), the proportion of type-𝑏
individuals is increasing in ℎ𝑏 ).

This intermediate configuration depicted in Figure 10b also illustrates the fact that for a given condi-

tional distribution of marital preferences, the initial condition matters for the persistence of a high level of

cultural diversity. Indeed, considering two countries that start from close, but different, initial conditions

in terms of cultural distribution. One might converge to the (1/2, 1/2) steady state characterized by sym-

metric cultural diversity and the other to (1 − ℎ𝑏, 1 − ℎ𝑏), where we can clearly identify a minority and a

majority culture.

5.4 Historical examples of cultural integration and preservation

The analysis in Section 5 demonstrates that being sufficiently homophilic is the key for the survival of

a cultural group. This will help explain cultural preservation for Mongolians and Manchurians in China,

Orthodox Jews, and the Chinese minority in Southeast AsianMuslim countries. Our results also imply that

if a minority cultural group is sufficiently open to intermarriage, it can be assimilated by the majority. This

explains the examples of the cultural integration of Xianbeis in China and Chinese minorities in Thailand.

We elaborate on these below. One should keep in mind that, in reality, marital preferences are likely to

be endogenous to socioeconomic and political contexts that are not taken into account by the current

analysis.

5.4.1 Effects of government

In the last 2,000 years, for an extended time period, many northern nomadic groups———e.g., Xianbeis, Mon-

golians, and Manchurians———conquered and governed the heartland of China (Zhongyuan) inhabited by

Han Chinese. Their population sizes were similarly small compared with the Han Chinese, but they dif-

fered in their governing policies toward ethnic intermarriage and integration. Xianbeis have been geneti-

cally and culturally integrated with the Han due to the intermarriage policies promoted and practiced by

their governing bodies, and the Mongolians and Manchurians have preserved their cultural traditions and

identities partly due to the governing dynasties’ policies against intermarrying with Han Chinese.

Xianbeis’ integration with the Han Chinese is an example of how cultural integration can be achieved

with a small group of heterophilic elites. The Northern Wei dynasty established by the Tuoba clan of

the Xianbei ethnic group, who were originally from northern Mongolia and Siberia, ruled northern China

from 385 to 535 AD (Liu, 2020).
25

As the Northern Wei unified northern China around 439, the emperors’

24
Indeed, the two saddle paths converging to the saddle point (ℎ𝑎, ℎ𝑎) separate the state space between the basin of attraction

of (1/2, 1/2) and the basin of attraction of (1 − ℎ𝑏 , 1 − ℎ𝑏 ).
25Mulan is believed to be based on a Northern Wei Xianbei heroine who joined the army for her father.
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desire for Han Chinese institutions and cultures grew. The Northern Wei started to arrange for local Han

Chinese elites to marry daughters of the Xianbei Tuoba royal family in the 480s (Watson, 1991).
26

More

than 50% of Tuoba Xianbei princesses of the Northern Wei were married to southern Han Chinese men

from imperial families and aristocrats from southern China of the southern dynasties who defected and

moved north to join the NorthernWei. The Sinicization was thorough: The royal families moved to central

China and adopted Chinese surnames, all Xianbei officials were forced to speak and write Chinese, and

Xianbei family and imperial traditions were abandoned for Chinese traditions. Other nomadic groups

of the time———e.g., Qiang, Xiongnu (Huns), and Rouran———also joined the ethnic integration. With the

rise of nomadic groups and the collapse of weak Han Chinese rule in northern China, due to politically

encouraged ethnic intermarriage, this was one of the biggest———if not the biggest———periods of cultural

integration in Chinese history. These groups no longer have separate cultural identities, but they infused

the genetic makeup of northern Chinese (Dien and Knapp, 2020).

In contrast, Mongolian and Manchurian cultural and ethnic identities have been preserved by the po-

litically motivated homophilic policies of their governing elites. Mongolians’ Yuan dynasty (1271 to 1368)

and Machurians’ Qing dynasty (1644 to 1912) conquered China and governed from Beijing. Both dynasties

adopted ethnic tier systems in which the Han Chinese were treated as inferior to the governing ethnicities

in terms of political and economic rights (Franke and Twitchett, 1994; Peterson, 2002).
27
Intermarriage was

not encouraged, if not completely banned. The governing body maintained their non-Han blood (though

the Manchurians intermarried with Mongolians during the Qing dynasty). As a result, they are officially

recognized ethnic minorities in modern China. Admittedly, many other factors have contributed to their

cultural preservation (Mongolians have an independent nation-state and a large autonomous regionwithin

China, and Manchurians’ governance is so recent that its longer-term cultural implications are still evolv-

ing). Nonetheless, intermarriage policies and political and economic rules that affected intermarrying

incentives steered them away from Xianbei-style cultural integration.

5.4.2 Effects of religion

Religion is a frequent barrier to intermarriage and frequently serves as an important base for mate selec-

tion (Marcson, 1951). Profound values are attached to religious group membership, and such membership

exercises strong control over marital behavior, which renders religious endogamy prescriptive. For ex-

ample, Orthodox Judaism upholds historic Jewish attitudes toward intermarriage, which it discourages.

Intermarriage is considered to be a deliberate rejection of Judaism, and consequently an intermarried per-

son is often cut off from the Orthodox Jewish community; see Bisin and Verdier (2000) for a discussion. As

a result, Orthodox Jews are able to preserve their distinctive culture.

Many parts of Southeast Asia have been continuously settled by Chinese for several centuries. In In-

donesia and Malaysia, the practice of Islam has been an important expression of ethnic and national iden-

26
The subsequent royal families governing Sui and Tang dynasties (581 to 907 AD) were from this elite group (the so-called

Guanlong elites, named after the region they governed from). Both the Sui dynasty’s Yang royal family and the Tang dynasty’s Li

royal family had maternal Xianbei lineages.

27
Yuan’s priority order was Mongolians, ethnic groups in western China, northern Chinese, and southern Chinese. Qing

politically and economically favored Manchurian and Mongolian elites (Eight Banners).
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tity for natives and forms a strong obstacle to intermarriage between natives and Chinese (Silcock, 1963;

Murray, 1968; Edmonds, 1968). As a result, Chinese still retain their names and languages and continue

to identify, generation after generation, as Chinese in Indonesia and Malaysia. In contrast, in Thailand,

Buddhism is the main religion, which is arguably more permissive and tolerant of intermarriage (Skinner,

2008). Chinese minorities have assimilated to the host culture by adopting the Thai language and names.

6 Conclusion

We demonstrate that the joint consideration of marital preferences, matching markets, and intergenera-

tional transmission technologies is required for a more complete understanding of cultural evolution. Un-

der perfect, in general, inelastic familial transmission in homogamies, with the presence of a small mass

of heterophilic individuals, cultural homogeneity is the generic long-run outcome; cultural heterogeneity

arises only when all proposers are homophilic or all members of a cultural group are homophilic. When

familial transmission in homogamies is substitutable with oblique transmission, cultural heterogeneity

arises, as demonstrated by Bisin and Verdier (2001). However, we demonstrate that it is sustained only

when not all individuals are heterophilic; the resilience of cultural traits relies on both the socialization

efforts of minority families to pass on their traits and the homophilic marital preferences of sufficiently

many proposers or sufficiently many members of a cultural group. We apply our model to the potential

long-lasting impact of a temporary gender imbalance on cultural evolution and the historical differences

in cultural assimilation and preservation of minority groups due to government policies and religious

practices.

Additional transmission technologies and matching mechanisms and more than two cultural groups

can be considered within our framework, and may generate additional insights into the evolution of cul-

tural traits, which we leave for future research. Furthermore, in this paper, we compare the outcomes

under different exogenously given distributions of marital preferences and stable matching schemes. How

matching schemes may endogenously evolve with culture warrants further investigation.

Appendix

A Microfoundation of cultural substitutability

Consider a husband and wife who both have trait 𝑖 . They have the possibility to transmit this trait to

their daughter (symmetric reasoning would apply for their son) with a probability 𝜏𝑡𝑖 . This probability

corresponds to a socialization effort whose cost is given by a strictly increasing and convex function 𝑐
(
𝜏𝑡𝑖
)

with 𝑐 (0) = 0 and 𝜕𝑐 (0)/𝜕𝜏𝑡𝑖 = 0. We also assume a form of cultural intolerance (Bisin and Verdier, 2001):

Parents prefer their child not to deviate from their own culture. To make things as simple as possible, we

assume that parents derive a utility 𝜈 ∈ (0, 1) from having a child with trait 𝑖 while this utility is normalized

to 0 if their child adopts trait 𝑗 ≠ 𝑖 . Then, given the cultural transmission process described in Section 2.3,
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parents from an 𝑎𝑎 couple choose their socialization effort 𝜏𝑡𝑎 to maximize

𝜏𝑡𝑎𝜈 + (1 − 𝜏𝑡𝑎)𝑞𝑡𝜈 − 𝑐
(
𝜏𝑡𝑎
)
.

Hence, the optimal socialization effort (that also corresponds to the probability of direct transmission)

must satisfy:

(1 − 𝑞𝑡 )𝜈 = 𝑐′
(
𝜏𝑡𝑎
)
.

By the properties of 𝑐 (·), it is clear that the optimal value of 𝜏𝑡𝑎 is decreasing in 𝑞𝑡 and is 0 when 𝑞𝑡 = 1.

Symmetrically, 𝜏𝑡
𝑏
(the socialization effort for a 𝑏𝑏 couple) is increasing in 𝑞𝑡 and 0 when 𝑞𝑡 = 0.

Note that, if we assume the cost function has a constant elasticity, 𝑐
(
𝜏𝑡𝑖
)
=

𝜂

1+𝜂
(
𝜏𝑡𝑖
) 1+𝜂

𝜂
, for 𝜂 > 0, the

optimal socialization efforts are 𝜏𝑡𝑎 = 𝜈𝜂 (1−𝑞𝑡 )𝜂 and 𝜏𝑡
𝑏
= 𝜈𝜂 (𝑞𝑡 )𝜂 . This tells us that the 𝑑 function defined

in Section 2.3 takes the form of 𝑑 (𝑟 ) = 𝜈𝜂 (1 − 𝑟 )𝜂 and the elasticity of cultural substitution is 𝜀𝑑 (𝑟 ) = 𝜂𝑟

1−𝑟 ,

which is increasing in 𝜂. Note that, the elasticity of the cost function is 𝜀𝑐 (𝜏) = 1+1/𝜂. Hence, the elasticity
of cultural substitution is higher when the elasticity of the cost function is lower. Indeed, if the elasticity

of the cost function is low, parents can increase the direct transmission probability without increasing the

socialization costs too much. Hence, they can more easily adjust 𝑑 in reaction to a change in 𝑟 .

In this case, the condition stated in Proposition 7,

ℎ𝑚 >
𝑑 (1/2)

𝑑 (1/2) − 𝑑 ′(1/2)/2 =
1

1 + 𝜀𝑑 (1/2)

is simply rewritten as ℎ𝑚 > 1/(1 +𝜂) where 𝜂 is the elasticity of cultural substitution at the point 𝑟 = 1/2.

B Proofs in Section 3

B.1 Proof of Lemma 1

Proof of Lemma 1. Suppose 𝑝𝑡 ⩾ 𝑞𝑡 . Cultural evolution is characterized by equations (3) and (4). When

𝑝0 = 𝑞0, we have 𝑝𝑡 = 𝑞𝑡 for any 𝑡 . Consider (𝑝0, 𝑞0) that satisfies 0 ⩽ 𝑞0 < 𝑝0 ⩽ 1 with either the

first or the last inequality being strict or both. By subtracting equation (4) from equation (3), we have

𝑝𝑡+1 − 𝑞𝑡+1 = (𝑝𝑡 − 𝑞𝑡 )2. Since 0 < 𝑝0 − 𝑞0 < 1, we have lim𝑡→∞
(
𝑝𝑡 − 𝑞𝑡

)
= 0. In other words,

lim𝑡→∞ 𝑝𝑡 = lim𝑡→∞ 𝑞𝑡 = 𝑟 ∗, for some 𝑟 ∗ ∈ [0, 1].
By the same logic, we can prove similar results for the case 𝑝𝑡 < 𝑞𝑡 . For (𝑝0, 𝑞0) that satisfies 0 ⩽ 𝑝0 <

𝑞0 ⩽ 1with either the first or the last inequality being strict or both, we have lim𝑡→∞ 𝑝𝑡 = lim𝑡→∞ 𝑞𝑡 = 𝑟 ∗,

or some 𝑟 ∗ ∈ [0, 1].
The steady state (1, 0) is unstable because if (𝑝0, 𝑞0) = (1, 𝜀) for some arbitrarily small 𝜀 > 0,

lim𝑡→∞ 𝑝𝑡 = lim𝑡→∞ 𝑞𝑡 = 1. Similarly, (0, 1) is unstable.
Now consider (𝑟 ∗, 𝑟 ∗) for some 𝑟 ∗ ∈ [0, 1]. For any arbitrarily small 𝜀 > 0 and 𝛿 > 0, if (𝑝0, 𝑞0) =

(𝑟 ∗ + 𝜀, 𝑟 ∗ + 𝛿), then (𝑝0, 𝑞0) cannot be either (0, 1) or (1, 0). According to the above analysis, lim𝑡→∞ 𝑝𝑡 =

lim𝑡→∞ 𝑞𝑡 . Hence, {(𝑟 ∗, 𝑟 ∗) |𝑟 ∗ ∈ [0, 1]} constitutes a stable set of steady states. □
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B.2 Proof of Proposition 1

Proof of Proposition 1. The cultural evolution when 𝑝𝑡 ⩾ 𝑞𝑡 is characterized by the following dynamic

system:

𝑝𝑡+1 = 𝑝𝑡 + 𝑑 (1 − 𝑝𝑡 ) (𝑞𝑡 − 𝑝𝑡 ); (18)

𝑞𝑡+1 = 𝑞𝑡 + 𝑑𝑞𝑡 (𝑝𝑡 − 𝑞𝑡 ) . (19)

When 𝑝0 = 𝑞0, we have 𝑝𝑡 = 𝑞𝑡 for any 𝑡 . Consider (𝑝0, 𝑞0) that satisfies 0 ⩽ 𝑞0 < 𝑝0 ⩽ 1 with either

the first or the last inequality being strict or both. By subtracting equation (4) from equation (3), we have

𝑝𝑡+1 −𝑞𝑡+1 = (1−𝑑) (𝑝𝑡 −𝑞𝑡 ) +𝑑 (𝑝𝑡 −𝑞𝑡 )2. Since 0 < 𝑝0 −𝑞0 < 1 and 𝑑 > 0, we have lim𝑡→∞
(
𝑝𝑡 −𝑞𝑡

)
= 0.

In other words, lim𝑡→∞ 𝑝𝑡 = lim𝑡→∞ 𝑞𝑡 = 𝑟 ∗, for some 𝑟 ∗ ∈ [0, 1].
By the same logic, we can prove similar results for the case 𝑝𝑡 < 𝑞𝑡 . For (𝑝0, 𝑞0) that satisfies 0 ⩽ 𝑝0 <

𝑞0 ⩽ 1with either the first or the last inequality being strict or both, we have lim𝑡→∞ 𝑝𝑡 = lim𝑡→∞ 𝑞𝑡 = 𝑟 ∗,

or some 𝑟 ∗ ∈ [0, 1].
The steady state (1, 0) is unstable because if (𝑝0, 𝑞0) = (1, 𝜀) for some arbitrarily small 𝜀 > 0,

lim𝑡→∞ 𝑝𝑡 = lim𝑡→∞ 𝑞𝑡 = 1. Similarly, (0, 1) is unstable. □

C Proofs and omitted details in Section 4

C.1 Proof of Proposition 2

Proof of Proposition 2. Let us consider the case where the probability of direct transmission in ho-

mogamies is a constant, and it equals 𝑑 ∈ (0, 1]. It encompasses the perfect vertical transmission case

𝑑 = 1 and the inelastic imperfect vertical transmission case 𝑑 ∈ (0, 1). The cultural evolution when

𝑝𝑡 + 𝑞𝑡 > 1 is characterized by the following dynamic system:

𝑝𝑡+1 = 𝑝𝑡 + 𝑑 (1 − 𝑝𝑡 ) (𝑝𝑡 + 𝑞𝑡 − 1); (20)

𝑞𝑡+1 = 𝑞𝑡 + 𝑑 (1 − 𝑞𝑡 ) (𝑝𝑡 + 𝑞𝑡 − 1). (21)

𝑑 > 0 implies that 𝑝𝑡+1 > 𝑝𝑡 , 𝑞𝑡+1 > 𝑞𝑡 . Consider the region 𝑇𝜀 in which 𝑝𝑡 + 𝑞𝑡 ⩾ 1 − 𝜀, for some

arbitrarily small 𝜀 > 0. 𝑇𝜀 is a compact set since it is closed and bounded. For any (𝑝𝑡 , 𝑞𝑡 ) ∈ 𝑇𝜀 , we have

| (𝑝𝑡 , 𝑞𝑡 ), (1, 1) | > | (𝑝𝑡+1, 𝑞𝑡+1), (1, 1) |. Hence, the dynamic system is a contraction mapping in the compact

set 𝑇𝜀 , and by the contraction mapping theorem, (𝑝𝑡 , 𝑞𝑡 ) converges to (1, 1) as time approaches infinity.

Hence, (1, 1) is attracting. Also, since the distance between (𝑝𝑡 , 𝑞𝑡 ) and (1, 1) is monotonically decreasing

in 𝑡 , (1, 1) must be stable. Therefore, it is asymptotically stable. Since 𝜀 is arbitrarily small, we can say that

for any (𝑝0, 𝑞0) such that 𝑝0 + 𝑞0 > 1, lim𝑡→∞ 𝑝𝑡 = lim𝑡→∞ 𝑞𝑡 = 1.

By using the same logic, we can prove that for any (𝑝0, 𝑞0) that satisfies 𝑝0 + 𝑞0 < 1, lim𝑡→∞ 𝑝𝑡 =

lim𝑡→∞ 𝑞𝑡 = 0. Also, (0, 0) is asymptotically stable.

Now consider a steady state (𝑟 ∗, 1 − 𝑟 ∗) for some 𝑟 ∗ ∈ [0, 1]. For any arbitrarily small 𝜀 > 0, if

(𝑝0, 𝑞0) = (𝑟 ∗ + 𝜀, 1− 𝑟 ∗), 𝑝0 +𝑞0 > 1. According to the above analysis, lim𝑡→∞ 𝑝𝑡 = lim𝑡→∞ 𝑞𝑡 = 1. Hence,
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any steady state (𝑟 ∗, 1 − 𝑟 ∗) for 𝑟 ∗ ∈ [0, 1] is unstable.
Now consider imperfect transmission with cultural substitutability 𝑑 ′(𝑟 ) < 0. When 𝑝𝑡 + 𝑞𝑡 < 1, the

cultural evolution is characterized by

𝑝𝑡+1 − 𝑝𝑡 = −𝜇𝑡
𝑏𝑏
𝑑 (1 − 𝑝𝑡 )𝑝𝑡 = −(1 − 𝑝𝑡 − 𝑞𝑡 )𝑑 (1 − 𝑝𝑡 )𝑝𝑡 < 0; (22)

𝑞𝑡+1 − 𝑞𝑡 = −𝜇𝑡
𝑏𝑏
𝑑 (1 − 𝑞𝑡 )𝑞𝑡 = −(1 − 𝑝𝑡 − 𝑞𝑡 )𝑑 (1 − 𝑞𝑡 )𝑞𝑡 < 0. (23)

By equations (22) and (23), the system tends toward (0, 0). Using the same argument of the contraction

mapping theorem as in Proposition 2, we can say that for any (𝑝0, 𝑞0) such that 𝑝0 + 𝑞0 < 1, lim𝑡→∞ 𝑝𝑡 =

lim𝑡→∞ 𝑞𝑡 = 0. When 𝑝𝑡 + 𝑞𝑡 > 1, the cultural evolution is characterized by

𝑝𝑡+1 − 𝑝𝑡 = 𝜇𝑡𝑎𝑎𝑑 (𝑝𝑡 ) (1 − 𝑝𝑡 ) = (𝑝𝑡 + 𝑞𝑡 − 1)𝑑 (𝑝𝑡 ) (1 − 𝑝𝑡 ) > 0; (24)

𝑞𝑡+1 − 𝑞𝑡 = 𝜇𝑡𝑎𝑎𝑑 (𝑝𝑡 ) (1 − 𝑞𝑡 ) = (𝑝𝑡 + 𝑞𝑡 − 1)𝑑 (𝑝𝑡 ) (1 − 𝑞𝑡 ) > 0. (25)

By equations (24) and (25), the system tends toward (1, 1). Using the same argument of the contraction

mapping theorem as above, we can say that for any (𝑝0, 𝑞0) such that 𝑝0+𝑞0 > 1, lim𝑡→∞ 𝑝𝑡 = lim𝑡→∞ 𝑞𝑡 =

1. And when 𝑝𝑡 + 𝑞𝑡 = 1, the cultural evolution is characterized by

𝑝𝑡+1 − 𝑝𝑡 = 0;

𝑞𝑡+1 − 𝑞𝑡 = 0.

In summary, the asymptotically stable steady states are (0, 0) and (1, 1), and any (𝑝∗, 𝑞∗) such that 𝑝∗+𝑞∗ =
1 is an unstable steady state. □

C.2 Stable matching with mixtures of homophilic and heterophilic proposers and re-
ceivers (Section 4.2)

Homophilic men and women of the same type, 𝑀𝜃1 and𝑊𝜃1 , want to be matched together. Hence, at any

stable matching the mass of 𝑎1𝑎1 couples ismin{𝑝𝑡ℎ𝑚𝑎, 𝑞
𝑡ℎ𝑤𝑎}, i.e.,{

𝑞𝑡ℎ𝑤𝑎 if 𝑞𝑡 <

(
ℎ𝑚𝑎

ℎ𝑤𝑎

)
𝑝𝑡 =: ℎ1(𝑝𝑡 ),

𝑝𝑡ℎ𝑚𝑎 otherwise.

Similarly, the mass of 𝑏1𝑏1 couples ismin{(1 − 𝑝𝑡 )ℎ𝑚𝑏, (1 − 𝑞𝑡 )ℎ𝑤𝑏}, i.e.,{
(1 − 𝑝𝑡 )ℎ𝑚𝑏 if 𝑞𝑡 < 1 − (1 − 𝑝𝑡 )

(
ℎ𝑚𝑏

ℎ𝑤𝑏

)
=: ℎ2(𝑝𝑡 ),

(1 − 𝑞𝑡 )ℎ𝑤𝑏 otherwise.

Moreover, for 𝜃 ≠ 𝜃 ′, heterophilic men and women of the opposite types, 𝑀𝜃2 and𝑊𝜃 ′
2
, want to be

matched together. Hence, at any stable matching the mass of 𝑎𝑏 couples must be at least min{𝑝𝑡 (1 −
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ℎ𝑚𝑎), (1 − 𝑞𝑡 ) (1 − ℎ𝑤𝑏)}, or equivalently{
𝑝𝑡 (1 − ℎ𝑚𝑎) if 𝑞𝑡 < 1 −

(
1−ℎ𝑚𝑎

1−ℎ𝑤𝑏

)
𝑝𝑡 =: ℎ3(𝑝𝑡 ),

(1 − 𝑞𝑡 ) (1 − ℎ𝑤𝑏) otherwise.

and the mass of 𝑏𝑎 couples must be at leastmin{(1 − 𝑝𝑡 ) (1 − ℎ𝑚𝑏), 𝑞𝑡 (1 − ℎ𝑤𝑎)}, or equivalently{
𝑞𝑡 (1 − ℎ𝑤𝑎) if 𝑞𝑡 <

(
1−ℎ𝑚𝑏

1−ℎ𝑤𝑎

)
(1 − 𝑝𝑡 ) =: ℎ4(𝑝𝑡 ),

(1 − 𝑝𝑡 ) (1 − ℎ𝑚𝑏) otherwise.
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(c) Matching-outcome state space partition

Figure 11: Partitioning regions for the characterization of stable matching.

Figure 11 depicts the functions ℎ1(𝑝𝑡 ), ℎ1(𝑝𝑡 ), ℎ1(𝑝𝑡 ) and ℎ4(𝑝𝑡 ). To derive this figure, we use the fact
thatℎ1(0) = 0 andℎ1(1) = 1/𝜌 > 1, ℎ2(0) = 1−1/𝜌 < 0 andℎ2(1) = 1, ℎ3(0) = 1 andℎ3(1) = ℎ𝑚𝑎 (1−𝜌𝜏 )

1−𝜌𝜏ℎ𝑚𝑎
∈

[0, 1], ℎ4(1) = 0 and ℎ4(0) =
1−𝜏ℎ𝑚𝑎

1−𝜌ℎ𝑚𝑎
which is lower than 1 iff 𝜏 > 𝜌 . Hence, when 𝜏 ⩽ 𝜌 (Figure 11a),

ℎ3(𝑝𝑡 ) crosses ℎ4(𝑝𝑡 ) once, while, when 𝜏 > 𝜌 (Figure 11b), ℎ3(𝑝𝑡 ) is always above ℎ4(𝑝𝑡 ). Finally, we can
verify that, when 𝜏 ⩽ 𝜌 , the crossing point between ℎ3(𝑝𝑡 ) and ℎ4(𝑝𝑡 ) is located above ℎ1(𝑝𝑡 ). To see this,
we can note that the value of 𝑝𝑡 such that ℎ1(𝑝𝑡 ) = ℎ3(𝑝𝑡 ), 𝑝13 = 𝜌 (1−𝜏𝜌ℎ𝑚𝑎 )

1+𝜌 (1−ℎ𝑚𝑎 (1+𝜏 ) ) , is higher than the value

of 𝑝𝑡 such that ℎ1(𝑝𝑡 ) = ℎ4(𝑝𝑡 ), 𝑝14 =
𝜌 (1−𝜏ℎ𝑚𝑎 )

1+𝜌 (1−ℎ𝑚𝑎 (1+𝜏 ) ) . As illustrated in Figure 11, ℎ1(𝑝𝑡 ), ℎ2(𝑝𝑡 ), ℎ3(𝑝𝑡 )
and ℎ4(𝑝𝑡 ) partition the unit square in the following ten disjoint sets:

28

Δ1 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : ℎ3(𝑝𝑡 ) > 𝑞𝑡 ⩾ ℎ4(𝑝𝑡 )

}
Δ2 :=

{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : 𝑞𝑡 ⩾ max{ℎ1(𝑝𝑡 ), ℎ3(𝑝𝑡 ), ℎ4(𝑝𝑡 )}

}
;

Δ3 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : ℎ1(𝑝𝑡 ) > 𝑞𝑡 ⩾ max{ℎ2(𝑝𝑡 ), ℎ3(𝑝𝑡 )}

}
;

Δ4 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : ℎ2(𝑝𝑡 ) > 𝑞𝑡 ⩾ ℎ3(𝑝𝑡 )

}
;

Δ5 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : min{ℎ3(𝑝𝑡 ), ℎ4(𝑝𝑡 )} > 𝑞𝑡 ⩾ ℎ1(𝑝𝑡 )

}
;

28
Note that the set Δ1 is nonempty only when 𝜏 ⩽ 𝜌 (see Figure 11a).
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Δ6 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : ℎ3(𝑝𝑡 ) > 𝑞𝑡 ⩾ max{ℎ1(𝑝𝑡 ), ℎ4(𝑝𝑡 )}

}
;

Δ7 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : min{ℎ1(𝑝𝑡 ), ℎ3(𝑝𝑡 )} > 𝑞𝑡 ⩾ max{ℎ2(𝑝𝑡 ), ℎ4(𝑝𝑡 )}

}
;

Δ8 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : min{ℎ1(𝑝𝑡 ), ℎ4(𝑝𝑡 )} > 𝑞𝑡 ⩾ ℎ2(𝑝𝑡 )

}
;

Δ9 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : min{ℎ2(𝑝𝑡 ), ℎ3(𝑝𝑡 )} > 𝑞𝑡 ⩾ ℎ4(𝑝𝑡 )

}
;

Δ10 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : min{ℎ2(𝑝𝑡 ), ℎ4(𝑝𝑡 )} > 𝑞𝑡

}
.

Below, we describe the stable matching in each region.

Region 𝜇𝑎𝑎 𝜇𝑏𝑎 𝜇𝑏𝑏 𝜇𝑎𝑏

Δ1 𝑝 − (1 − 𝑞) (1 − ℎ𝑤𝑏) 1 − 𝑝 − (1 − 𝑞)ℎ𝑤𝑏 (1 − 𝑞)ℎ𝑤𝑏 (1 − 𝑞) (1 − ℎ𝑤𝑏)
Δ2 𝑝 − (1 − 𝑞) (1 − ℎ𝑤𝑏) 1 − 𝑝 − (1 − 𝑞)ℎ𝑤𝑏 (1 − 𝑞)ℎ𝑤𝑏 (1 − 𝑞) (1 − ℎ𝑤𝑏)
Δ3 𝑝 − (1 − 𝑞) (1 − ℎ𝑤𝑏) 1 − 𝑝 − (1 − 𝑞)ℎ𝑤𝑏 (1 − 𝑞)ℎ𝑤𝑏 (1 − 𝑞) (1 − ℎ𝑤𝑏)
Δ4 𝑞 − (1 − 𝑝) (1 − ℎ𝑚𝑏) (1 − 𝑝) (1 − ℎ𝑚𝑏) (1 − 𝑝)ℎ𝑚𝑏 1 − 𝑞 − (1 − 𝑝)ℎ𝑚𝑏

Δ5 𝑝ℎ𝑚𝑎 𝑞 − 𝑝ℎ𝑚𝑎 1 − 𝑞 − 𝑝 (1 − ℎ𝑚𝑎) 𝑝 (1 − ℎ𝑚𝑎)
Δ6 𝑝ℎ𝑚𝑎 𝑞 − 𝑝ℎ𝑚𝑎 1 − 𝑞 − 𝑝 (1 − ℎ𝑚𝑎) 𝑝 (1 − ℎ𝑚𝑎)
Δ8 𝑞ℎ𝑤𝑎 𝑞(1 − ℎ𝑤𝑎) 1 − 𝑝 − 𝑞(1 − ℎ𝑤𝑎) 𝑝 − 𝑞ℎ𝑤𝑎

Δ9 𝑞 − (1 − 𝑝) (1 − ℎ𝑚𝑏) (1 − 𝑝) (1 − ℎ𝑚𝑏) (1 − 𝑝)ℎ𝑚𝑏 1 − 𝑞 − (1 − 𝑝)ℎ𝑚𝑏

Δ10 𝑞ℎ𝑤𝑎 𝑞(1 − ℎ𝑤𝑎) 1 − 𝑝 − 𝑞(1 − ℎ𝑤𝑎) 𝑝 − 𝑞ℎ𝑤𝑎

If (𝑝, 𝑞) ∈ Δ7, MOSM and WOSM do not coincide. Define 𝛾𝑤 (𝑝) := 1−𝑝𝑡−ℎ𝑤𝑏

1−ℎ𝑤𝑎−ℎ𝑤𝑏
and 𝛾𝑚 (𝑝) := 1 − ℎ𝑚𝑏 −

𝑝𝑡 (1 − ℎ𝑚𝑎 − ℎ𝑚𝑏). The stable matching in Δ7 is described as follows.

𝜇𝑎𝑎 𝜇𝑏𝑎 𝜇𝑏𝑏 𝜇𝑎𝑏

WOSM

𝑞 < 𝛾𝑤 (𝑝) 𝑞ℎ𝑤𝑎 𝑞(1 − ℎ𝑤𝑎) 1 − 𝑝 − 𝑞(1 − ℎ𝑤𝑎) 𝑝 − 𝑞ℎ𝑤𝑎

𝑞 ⩾ 𝛾𝑤 (𝑝) 𝑝 − (1 − 𝑞) (1 − ℎ𝑤𝑏) 1 − 𝑝 − (1 − 𝑞)ℎ𝑤𝑏 (1 − 𝑞)ℎ𝑤𝑏 (1 − 𝑞) (1 − ℎ𝑤𝑏)
MOSM

𝑞 < 𝛾𝑚 (𝑝) 𝑞 − (1 − 𝑝) (1 − ℎ𝑚𝑏) (1 − 𝑝) (1 − ℎ𝑚𝑏) (1 − 𝑝)ℎ𝑚𝑏 1 − 𝑞 − (1 − 𝑝)ℎ𝑚𝑏

𝑞 ⩾ 𝛾𝑚 (𝑝) 𝑝ℎ𝑚𝑎 𝑞 − 𝑝ℎ𝑚𝑎 1 − 𝑞 − 𝑝 (1 − ℎ𝑚𝑎) 𝑝 (1 − ℎ𝑚𝑎)

We can easily verify that, 𝛾𝑤 (𝑝𝑡 ) passes through the crossing point between ℎ1(𝑝𝑡 ) and ℎ3(𝑝𝑡 ) and the
crossing point between ℎ2(𝑝𝑡 ) and ℎ4(𝑝𝑡 ) while 𝛾𝑚 (𝑝𝑡 ) passes through the crossing point between ℎ1(𝑝𝑡 )
and ℎ4(𝑝𝑡 ) and the crossing point between ℎ2(𝑝𝑡 ) and ℎ3(𝑝𝑡 ). The two functions are depicted in Figure

11c that also illustrates a new partition of the unit square, in which each region corresponds to a particular

stable matching.

C.3 Proof of Proposition 3

Construction of the phase diagrams in Figure 4. Cultural evolution is driven by the following two

dimensional dynamical system:

𝑝𝑡+1 = 𝜇𝑡𝑎𝑎 + (𝜇𝑡
𝑎𝑏

+ 𝜇𝑡
𝑏𝑎
)𝑝𝑡 ;
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𝑞𝑡+1 = 𝜇𝑡𝑎𝑎 + (𝜇𝑡
𝑎𝑏

+ 𝜇𝑡
𝑏𝑎
)𝑞𝑡 .

In the following, for each region partitioning the unit square in Figure 11c, we will replace the pro-

portions 𝜇𝑎𝑎 , 𝜇𝑎𝑏 and 𝜇𝑏𝑎 by those corresponding to the stable matching. Before that, let us define the

following functions that will be useful in our analysis:

𝜅 (𝑥 ;ℎ) := 1 − ℎ − 𝑥 (1 − 2ℎ);

𝑓 (𝑥 ;ℎ, 𝜆) := 1 − [𝑥 − 𝜆(1 − 𝑥)] (1 − 𝑥)
1 − ℎ − 𝑥 (1 − 2ℎ) ;

𝑘 (𝑥 ;ℎ, 𝜆) :=
𝑥 [1 − (1 + 𝜆)𝑥]
ℎ + 𝑥 (1 − 2ℎ) ;

𝑔(𝑥 ;ℎ, 𝜆) :=
1 − ℎ − (1 + 𝜆)𝑥

1 − 2ℎ
+ 𝜆(ℎ − ℎ𝑤𝑎)
(1 − 2ℎ) (ℎ𝑤𝑏 − ℎ𝑤𝑎)

.

If (𝑝𝑡 , 𝑞𝑡 ) ∈ Δ1 ∪ Δ2 ∪ Δ3:

𝑝𝑡+1 = 𝑝𝑡 − (1 − 𝑞𝑡 ) (1 − ℎ𝑤𝑏) +
[
1 − 𝑝𝑡 + (1 − 𝑞𝑡 ) (1 − 2ℎ𝑤𝑏)

]
𝑝𝑡 ;

𝑞𝑡+1 = 𝑝𝑡 − (1 − 𝑞𝑡 ) (1 − ℎ𝑤𝑏) +
[
1 − 𝑝𝑡 + (1 − 𝑞𝑡 ) (1 − 2ℎ𝑤𝑏)

]
𝑞𝑡 .

Hence, 𝑝𝑡+1 > 𝑝𝑡 iff 𝑞𝑡 > 𝑓 (𝑝𝑡 ;ℎ𝑤𝑏, 0). Given the properties of 𝑓 (𝑝𝑡 ;ℎ𝑤𝑏, 0), ℎ1(𝑝𝑡 ) and ℎ3(𝑝𝑡 ), for all
(𝑝𝑡 , 𝑞𝑡 ) ∈ Δ1 ∪ Δ2 ∪ Δ3, 𝑞

𝑡
is higher than 𝑓 (𝑝𝑡 ;ℎ𝑤𝑏, 0) such that 𝑝𝑡+1 > 𝑝𝑡 . Moreover, 𝑞𝑡+1 > 𝑞𝑡 iff 𝑞𝑡 >

𝑔(𝑝𝑡 ;ℎ𝑤𝑏, 0) which is downward slopping (if ℎ𝑤𝑏 < 1/2) with 𝑔(0;ℎ𝑤𝑏, 0) = 1−ℎ𝑤𝑏

1−2ℎ𝑤𝑏
> 1, 𝑔(1/2;ℎ𝑤𝑏, 0) =

1/2 and 𝑔(1;ℎ𝑤𝑏, 0) = −ℎ𝑤𝑏

1−2ℎ𝑤𝑏
< 0.

If (𝑝𝑡 , 𝑞𝑡 ) ∈ Δ5 ∪ Δ6:

𝑝𝑡+1 = 𝑝𝑡ℎ𝑚𝑎 +
[
𝑞𝑡 + 𝑝𝑡 (1 − 2ℎ𝑚𝑎)

]
𝑝𝑡 ;

𝑞𝑡+1 = 𝑝𝑡ℎ𝑚𝑎 +
[
𝑞𝑡 + 𝑝𝑡 (1 − 2ℎ𝑚𝑎)

]
𝑞𝑡 .

Hence, 𝑝𝑡+1 > 𝑝𝑡 iff𝑞𝑡 > 𝜅 (𝑝𝑡 ;ℎ𝑚𝑎) which is downward slopping (ifℎ𝑚𝑎 < 1/2) with𝜅 (0;ℎ𝑚𝑎) = 1−ℎ𝑚𝑎 ∈
(0, 1), 𝜅 (1/2;ℎ𝑚𝑎) = 1/2 and 𝜅 (1;ℎ𝑚𝑎) = ℎ𝑚𝑎 ∈ (0, 1). Moreover, 𝑞𝑡+1 > 𝑞𝑡 iff, 𝑝𝑡 > 𝑘 (𝑞𝑡 ;ℎ𝑚𝑎, 0).

If (𝑝𝑡 , 𝑞𝑡 ) ∈ Δ8 ∪ Δ10:

𝑝𝑡+1 = 𝑞𝑡ℎ𝑤𝑎 +
[
𝑝𝑡 + 𝑞𝑡 (1 − 2ℎ𝑤𝑎)

]
𝑝𝑡 ;

𝑞𝑡+1 = 𝑞𝑡ℎ𝑤𝑎 +
[
𝑝𝑡 + 𝑞𝑡 (1 − 2ℎ𝑤𝑎)

]
𝑞𝑡 .

Hence, 𝑝𝑡+1 > 𝑝𝑡 iff 𝑞𝑡 > 𝑘 (𝑝𝑡 ;ℎ𝑤𝑎, 0). Moreover, 𝑞𝑡+1 > 𝑞𝑡 iff 𝑞𝑡 > 𝑔(𝑝𝑡 ;ℎ𝑤𝑎, 0) with 𝑔(0;ℎ𝑤𝑎, 0) =
1−ℎ𝑤𝑎

1−2ℎ𝑤𝑎
> 1, 𝑔(1/2;ℎ𝑤𝑎, 0) = 1/2 and 𝑔(1;ℎ𝑤𝑎, 0) = −ℎ𝑏

1−2ℎ𝑤𝑎
< 0.
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If (𝑝𝑡 , 𝑞𝑡 ) ∈ Δ4 ∪ Δ9:

𝑝𝑡+1 = 𝑞𝑡 − (1 − 𝑝𝑡 ) (1 − ℎ𝑚𝑏) +
[
1 − 𝑞𝑡 + (1 − 𝑝𝑡 ) (1 − 2ℎ𝑚𝑏)

]
𝑝𝑡 ;

𝑞𝑡+1 = 𝑞𝑡 − (1 − 𝑝𝑡 ) (1 − ℎ𝑚𝑏) +
[
1 − 𝑞𝑡 + (1 − 𝑝𝑡 ) (1 − 2ℎ𝑚𝑏)

]
𝑞𝑡 .

Hence, 𝑝𝑡+1 > 𝑝𝑡 iff 𝑞𝑡 > 𝜅 (𝑝𝑡 ;ℎ𝑚𝑏) with 𝜅 (0;ℎ𝑚𝑏) = 1 − ℎ𝑚𝑏 ∈ (0, 1), 𝜅 (1/2;ℎ𝑚𝑏) = 1/2 and 𝜅 (1;ℎ𝑚𝑏) =
ℎ𝑚𝑏 ∈ (0, 1). Moreover, 𝑞𝑡+1 > 𝑞𝑡 iff 𝑝𝑡 > 𝑓 (𝑞𝑡 ;ℎ𝑚𝑏, 0), which is always true when (𝑝𝑡 , 𝑞𝑡 ) ∈ Δ4 ∪ Δ9.

If (𝑝𝑡 , 𝑞𝑡 ) ∈ Δ7:

• Consider WOSM. If 𝑞𝑡 < 𝛾𝑤 (𝑝𝑡 ), the dynamic system is the same as in the case (𝑝𝑡 , 𝑞𝑡 ) ∈ Δ8 ∪ Δ10

such that 𝑝𝑡+1 > 𝑝𝑡 iff 𝑞𝑡 > 𝑘 (𝑝𝑡 ;ℎ𝑤𝑎, 0) and 𝑞𝑡+1 < 𝑞𝑡 iff 𝑞𝑡 < 𝑔(𝑝𝑡 ;ℎ𝑤𝑎, 0). If 𝑞𝑡 ⩾ 𝛾𝑤 (𝑝𝑡 ),
the dynamic system is the same as in the case (𝑝𝑡 , 𝑞𝑡 ) ∈ Δ1 ∪ Δ2 ∪ Δ3 such that 𝑝𝑡+1 > 𝑝𝑡 iff

𝑞𝑡 > 𝑓 (𝑝𝑡 ;ℎ𝑤𝑏, 0) and 𝑞𝑡+1 > 𝑞𝑡 iff 𝑞𝑡 > 𝑔(𝑝𝑡 ;ℎ𝑤𝑏, 0). Now, 𝑔(𝑝𝑡 ;ℎ𝑤𝑏, 0) is always below 𝛾𝑤 (𝑝𝑡 ),
such that, if 𝑞𝑡 ⩾ 𝛾𝑤 (𝑝𝑡 ), 𝑞𝑡+1 > 𝑞𝑡 . To sum-up, the line of equation 𝑞𝑡 = 𝑔(𝑝𝑡 ;ℎ𝑤𝑎, 0)———which
is below the line 𝑞𝑡 = 𝛾𝑤 (𝑝𝑡 )———corresponds to the locus of stationarity of 𝑞𝑡 ; while the curve of

equation 𝑞𝑡 = 𝑘 (𝑝𝑡 ;ℎ𝑤𝑎, 0) if 𝑞𝑡 < 𝛾𝑤 (𝑝𝑡 ) and 𝑞𝑡 = 𝑓 (𝑝𝑡 ;ℎ𝑤𝑏, 0) for 𝑞𝑡 ⩾ 𝛾𝑤 (𝑝𝑡 ) corresponds to the

stationnary locus of 𝑝𝑡 .

• ConsiderMOSM. If𝑞𝑡 < 𝛾𝑚 (𝑝𝑡 ), the dynamic system is the same as in the case (𝑝𝑡 , 𝑞𝑡 ) ∈ Δ4∪Δ9 such

that 𝑞𝑡+1 > 𝑞𝑡 iff 𝑝𝑡 > 𝑓 (𝑞𝑡 ;ℎ𝑚𝑏, 0) and 𝑝𝑡+1 < 𝑝𝑡 iff 𝑞𝑡 > 𝜅 (𝑝𝑡 ;ℎ𝑚𝑏). If 𝑞𝑡 ⩾ 𝛾𝑚 (𝑝𝑡 ), the dynamic

system is the same as in the case (𝑝𝑡 , 𝑞𝑡 ) ∈ Δ5 ∪ Δ6 such that 𝑞𝑡+1 > 𝑞𝑡 iff 𝑝𝑡 > 𝑘 (𝑞𝑡 ;ℎ𝑚𝑎, 0) and
𝑝𝑡+1 > 𝑝𝑡 iff 𝑞𝑡 > 𝜅 (𝑝𝑡 ;ℎ𝑚𝑎). Now, 𝜅 (𝑝𝑡 ;ℎ𝑚𝑎) is below 𝛾𝑚 (𝑝𝑡 ) such that, if 𝑞𝑡 ⩾ 𝛾𝑚 (𝑝𝑡 ), 𝑝𝑡+1 > 𝑝𝑡 .

To sum-up, the line of equation 𝑞𝑡 = 𝜅 (𝑝𝑡 ;ℎ𝑚𝑏), which is below the line 𝑞𝑡 = 𝛾𝑚 (𝑝𝑡 ), corresponds
to the stationnary locus of 𝑝𝑡 , while the curve of equation 𝑝𝑡 = 𝑘 (𝑞𝑡 ;ℎ𝑚𝑎, 0) if 𝑞𝑡 ⩾ 𝛾𝑚 (𝑝𝑡 ) and
𝑝𝑡 = 𝑓 (𝑞𝑡 ;ℎ𝑚𝑏, 0) if 𝑞𝑡 < 𝛾𝑚 (𝑝𝑡 ) corresponds to the stationnary locus of 𝑞𝑡 .

From the analysis above, we can draw the 𝑞𝑞 and 𝑝𝑝 curves correspond to the stationary locus of 𝑞𝑡

and 𝑝𝑡 respectively. Several configurations according to the regions the two locus belong to. However, in

all possible instances and for both MOSM and WOSM, the 𝑞𝑞 locus always cross the 𝑝𝑝 locus only once,

in (1/2, 1/2) and from above. Moreover, 𝑞𝑞 and 𝑝𝑝 are continuous———since the proportions of each type of

couple at stable matching are so———and the analysis above allows us to conclude that 𝑝𝑝 is stable while 𝑞𝑞

is unstable.

Proof of Proposition 3. We first show that (0, 0) is asymptotically stable. Consider the region 𝑇𝜀 in

which 𝑝𝑡 + 𝑞𝑡 ⩽ 1 − 𝜀, for some arbitrarily small 𝜀 > 0. 𝑇𝜀 is a compact set since it is closed and bounded.

For any (𝑝𝑡 , 𝑞𝑡 ) ∈ 𝑇𝜀 , we have

𝑝𝑡+1 + 𝑞𝑡+1 = 2𝜇𝑡𝑎𝑎 + (𝜇𝑡
𝑎𝑏

+ 𝜇𝑡
𝑏𝑎
) (𝑝𝑡 + 𝑞𝑡 )

< 𝜇𝑡𝑎𝑎 + 𝜇𝑡
𝑎𝑏

+ 𝜇𝑡𝑎𝑎 + 𝜇𝑡
𝑏𝑎

= 𝑝𝑡 + 𝑞𝑡 .

The inequality comes from the fact that, 𝑝𝑡 +𝑞𝑡 < 1 (since (𝑝𝑡 , 𝑞𝑡 ) ∈ 𝑇𝜀 ) while the last equality holds since,
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at any stable matching all type 𝑎 men and all type 𝑎 women must be matched, such that: 𝜇𝑡𝑎𝑎 + 𝜇𝑡
𝑎𝑏

= 𝑝𝑡

and 𝜇𝑡𝑎𝑎 + 𝜇𝑡
𝑏𝑎

= 𝑞𝑡 .

This implies that for any (𝑝𝑡 , 𝑞𝑡 ) ∈ 𝑇𝜀 , 𝑝
𝑡 + 𝑞𝑡 > 𝑝𝑡+1 + 𝑞𝑡+1. Hence, 𝑝𝑡 + 𝑞𝑡 converges to 0 as time

approaches infinity by the monotone convergence theorem, implying that (𝑝𝑡 , 𝑞𝑡 ) converges to 0 as time

approaches infinity as well. Hence, (0, 0) is attracting. Also, for any 𝛿 > 0, for any (𝑝0, 𝑞0) satisfies that√︁
(𝑝0)2 + (𝑞0)2 <

√
2
2 𝛿 , we have

√︁
(𝑝𝑡 )2 + (𝑞𝑡 )2 ⩽ 𝑝𝑡 +𝑞𝑡 < 𝑝0 +𝑞0 < 𝛿 , given that 𝑝𝑡 +𝑞𝑡 is monotonically

decreasing in 𝑡 . Hence (0, 0) is stable. Therefore, it is asymptotically stable. Since 𝜀 is arbitrarily small, we

can say that for any (𝑝0, 𝑞0) such that 𝑝0 + 𝑞0 < 1, (𝑝𝑡 , 𝑞𝑡 ) converges to (0, 0) as time approaches infinity.

By applying the same logic, we can show that (1, 1) is asymptotically stable and for any (𝑝0, 𝑞0) such
that 𝑝0 + 𝑞0 > 1, (𝑝𝑡 , 𝑞𝑡 ) converges to (1, 1) as time approaches infinity.

To further check the stability properties of (1/2, 1/2) we first have to note that, (1/2, 1/2) may either

belongs to Region Δ7 if ℎ4(1/2) < 1/2 (i.e., ℎ𝑤𝑎 < ℎ𝑚𝑏 ), or to Region Δ8 ∪ Δ10 otherwise. Then, we have

to check the Jacobian matrix of the dynamics evaluated at ( 12 ,
1
2 ) in Region Δ7 for MOSM and WOSM and

in Region Δ8 ∪ Δ10. Since, considering WOSM (resp., MOSM), the dynamics in Region Δ7 is identical to

the dynamics in Region Δ8 ∪ Δ10 or Δ1 ∪ Δ2 ∪ Δ3 (resp., Region Δ4 ∪ Δ9 or Δ5 ∪ Δ6), the Jacobian matrix

at ( 12 ,
1
2 ) has only to be checked in these four regions.

In region Δ1 ∪ Δ2 ∪ Δ3, the Jacobian matrix evaluated at (1/2, 1/2), is[
2(1 − 𝑝) + (1 − 2ℎ𝑤𝑏) (1 − 𝑞) 1 − ℎ𝑤𝑏 − (1 − 2ℎ𝑤𝑏)𝑝

1 − 𝑞 3(1 − ℎ𝑤𝑏) − 𝑝 − 2(1 − 2ℎ𝑤𝑏)𝑞

]
(𝑝= 1

2 ,𝑞=
1
2 )

=

[
3
2 − ℎ𝑤𝑏

1
2

1
2

3
2 − ℎ𝑤𝑏

]
.

In region Δ4 ∪ Δ9, the Jacobian matrix evaluated at (1/2, 1/2), is[
3(1 − ℎ𝑚𝑏) − 𝑞 − 2(1 − 2ℎ𝑚𝑏)𝑝 1 − 𝑝

1 − ℎ𝑚𝑏 − (1 − 2ℎ𝑚𝑏)𝑞 2(1 − 𝑞) + (1 − 2ℎ𝑚𝑏) (1 − 𝑝)

]
(𝑝= 1

2 ,𝑞=
1
2 )

=

[
3
2 − ℎ𝑚𝑏

1
2

1
2

3
2 − ℎ𝑚𝑏

]
.

In region Δ5 ∪ Δ6, the Jacobian matrix evaluated at (1/2, 1/2), is[
ℎ𝑚𝑎 + 𝑞 − 2(2ℎ𝑚𝑎 − 1)𝑝 𝑝

ℎ𝑚𝑎 − (2ℎ𝑚𝑎 − 1)𝑞 2𝑞 − (2ℎ𝑚𝑎 − 1)𝑝

]
(𝑝= 1

2 ,𝑞=
1
2 )

=

[
3
2 − ℎ𝑚𝑎

1
2

1
2

3
2 − ℎ𝑚𝑎

]
.

In region Δ8 ∪ Δ10, the Jacobian matrix evaluated at (1/2, 1/2), is[
2𝑝 − (2ℎ𝑤𝑎 − 1)𝑞 ℎ𝑤𝑎 − (2ℎ𝑤𝑎 − 1)𝑝

𝑞 ℎ𝑤𝑎 + 𝑝 − 2(2ℎ𝑤𝑎 − 1)𝑞

]
(𝑝= 1

2 ,𝑞=
1
2 )

=

[
3
2 − ℎ𝑤𝑎

1
2

1
2

3
2 − ℎ𝑤𝑎

]
.

In all four configurations, the eigenvalues are given by 1−ℎ < 1 and 2−ℎ > 1 (where ℎ equals to ℎ𝑤𝑏 ,

ℎ𝑚𝑏 , ℎ𝑚𝑎 or ℎ𝑤𝑎). Hence, ( 12 ,
1
2 ) is a saddle point.

Finally, when 𝑝𝑡 + 𝑞𝑡 = 1 we must have 𝑝𝑡+1 + 𝑞𝑡+1 = 1. In this case, for 𝑝𝑡 = 1 − 𝑝𝑡 > 1/2, we have:

𝑝𝑡+1 > 𝜇𝑡𝑎𝑎 +
1

2

[
𝜇𝑡
𝑎𝑏

+ 𝜇𝑡
𝑏𝑎

]
=
1

2

[
2𝜇𝑡𝑎𝑎 + 𝜇𝑡

𝑎𝑏
+ 𝜇𝑡

𝑏𝑎

]
=
𝑝𝑡 + 𝑞𝑡

2
=
1

2
.
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Moreover, since 𝑝𝑡 = 𝜇𝑡𝑎𝑎 + 𝜇𝑡
𝑎𝑏

and 1 − 𝑞𝑡 = 𝜇𝑡
𝑏𝑏

+ 𝜇𝑡
𝑎𝑏
, the condition 𝑝𝑡 = 1 − 𝑞𝑡 implies 𝜇𝑡𝑎𝑎 = 𝜇𝑡

𝑏𝑏
. Hence,

in this case, 𝑝𝑡+1 = 𝜇𝑡𝑎𝑎 + 𝑝𝑡
[
1 − 𝜇𝑡𝑎𝑎 − 𝜇𝑡

𝑏𝑏

]
such that 𝑝𝑡+1 − 𝑝𝑡 = 𝜇𝑡𝑎𝑎 (1− 2𝑝𝑡 ) wich is negative if 𝑝𝑡 > 1/2.

Then by the monotone convergence theorem, for any 𝑝0 = 1−𝑞0, as time goes to infinity, 𝑝𝑡 converges to

1
2 , which automatically implies that 𝑞𝑡 converges to 1

2 as well.

Hence, the unique saddle path that converges toward (1/2, 1/2) and that splits the state space between
the basin of attraction of (0, 0) (𝑝𝑡 + 𝑞𝑡 < 1) and the basin of attraction of (1, 1) (𝑝𝑡 + 𝑞𝑡 > 1) exactly

corresponds to the straight line 𝑞𝑡 = 1 − 𝑝𝑡 .

The above result is straightforwardly generalized to the case of inelastic vertical transmission in ho-

mogamies. To see this, consider 𝑑 (𝑟 ) = 𝑑 ∈ (0, 1]. The system (1)-(2), that characterizes the cultural

dynamics, can be rewritten as

𝑝𝑡+1 = 𝑝𝑡 + 𝑑
[
(1 − 𝑝𝑡 )𝜇𝑡𝑎𝑎 − 𝑝𝑡𝜇𝑡

𝑏𝑏

]
; (26)

𝑞𝑡+1 = 𝑞𝑡 + 𝑑
[
(1 − 𝑞𝑡 )𝜇𝑡𝑎𝑎 − 𝑞𝑡𝜇𝑡

𝑏𝑏

]
. (27)

One can observe that, for both 𝑑 = 1 (perfect vertical transmission) and 𝑑 ∈ (0, 1) (inelastic vertical

transmission), 𝑝𝑡+1 > 𝑝𝑡 iff (1 − 𝑝𝑡 )𝜇𝑡𝑎𝑎 > 𝑝𝑡𝜇𝑡
𝑏𝑏

and 𝑞𝑡+1 > 𝑞𝑡 iff (1 − 𝑞𝑡 )𝜇𝑡𝑎𝑎 > 𝑞𝑡𝜇𝑡
𝑏𝑏
. Hence, the long-run

distribution of cultural traits must be the same under perfect vertical transmission and inelastic vertical

transmission. □

C.4 Proof of Proposition 4

Proof of Proposition 4. Suppose 𝑝0 + 𝑞0 > 1. Under MOSM, the stable steady state is some (𝑝∗, 𝑞∗) ∈
(0, 1)2 such that 𝑝∗ = 𝑞∗ and the associate stable matching is 𝜇∗𝑎𝑎 = 𝑝∗, 𝜇∗

𝑏𝑏
= 1 − 𝑝∗ and 𝜇∗

𝑎𝑏
= 𝜇∗

𝑏𝑎
= 0.

Men’s average payoff is 𝑝∗𝑈𝑎𝑎 + (1 − 𝑝∗)𝑈𝑏𝑏 and women’s average payoff is

𝑝∗
[
ℎ𝑤𝑎𝑉

1
𝑎𝑎 + (1 − ℎ𝑤𝑎)𝑉 2

𝑎𝑎

]
+ (1 − 𝑝∗)

[
ℎ𝑤𝑏𝑉

1
𝑏𝑏

+ (1 − ℎ𝑤𝑏)𝑉 2
𝑏𝑏

]
.

Under WOSM, the stable steady state is (𝑝∗, 𝑞∗) = (1, 1) so that 𝜇∗𝑎𝑎 = 1 and 𝜇∗
𝑏𝑏

= 𝜇∗
𝑎𝑏

= 𝜇∗
𝑏𝑎

= 0. Men’s

payoff is𝑈𝑎𝑎 and women’s average payoff is ℎ𝑤𝑎𝑉
1
𝑎𝑎 + (1 − ℎ𝑤𝑎)𝑉 2

𝑎𝑎 .

When 𝑈𝑎𝑎 > 𝑈𝑏𝑏 (resp., 𝑈𝑎𝑎 < 𝑈𝑏𝑏 ), men are strictly better off (worse off) under MOSM than under

WOSM in the long run. Whenℎ𝑤𝑎𝑉
1
𝑎𝑎+(1−ℎ𝑤𝑎)𝑉 2

𝑎𝑎 > ℎ𝑤𝑏𝑉
1
𝑏𝑏
+(1−ℎ𝑤𝑏)𝑉 2

𝑏𝑏
(resp., ℎ𝑤𝑎𝑉

1
𝑎𝑎+(1−ℎ𝑤𝑎)𝑉 2

𝑎𝑎 <

ℎ𝑤𝑏𝑉
1
𝑏𝑏

+ (1−ℎ𝑤𝑏)𝑉 2
𝑏𝑏
), women are strictly better (resp., worse off) under MOSM than under WOSM in the

long run. □

D Omitted details with gender imbalance (Section 4.3.2)

We consider a market with a mass 𝑝 (1+𝜆) of type-𝑎 men, a mass (1−𝑝) (1+𝜆) of type-𝑏 men, a mass 𝑞 of

type-𝑎 women and a mass (1−𝑞) of type-𝑏 women. All men have homophilic preferences (ℎ𝑚𝑎 = ℎ𝑚𝑏 = 1)

and not all women have homophilic preferences (ℎ𝑤𝑎 < 1 or ℎ𝑤𝑏 < 1).29

29
For the sake of clarity, we present the results in the case ℎ𝑤𝑎 + ℎ𝑤𝑏 < 1 but they all generalize to any (ℎ𝑤𝑎, ℎ𝑤𝑏 ) ∈ [0, 1)2.
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D.1 Stable matching with gender imbalance

The two following intermediary results are useful for characterizing the stable matching in the presence

of gender imbalance.

Lemma 4. At any stable matching, if there exists a positive mass of unmatched type-𝑎 men, all type-𝑎1 and

𝑏2 women must be matched with a type-𝑎 man; and if there exists a positive mass of unmatched type-𝑏 men,

all type-𝑎2 and 𝑏1 women must be matched with a type-𝑏 man.

Proof. Let us prove the first point, the proof of the second point would follow exactly the same logic.

By contradiction, assume that there exists a positive mass of unmatched type-𝑎 men and a positive mass

of either type-𝑎1 or type-𝑏2 women who are either unmatched or matched with a type-𝑏 man. Then

these women will form blocking pairs with the unmatched type-𝑎 men. Hence, the matching cannot be

stable. □

Lemma 5. At any stable matching, either all type-𝑎1 and 𝑏2 women are matched with a type-𝑎 man, or all

type-𝑎2 and 𝑏1 women are matched with a type 𝑏-man (or both).

Proof. There are more men than women such that, at any matching, some men (either of type-𝑎, of type-𝑏

or of both types) will remain unmatched. The result of the lemma is directly derived from this simple fact

associated with Lemma 4. □

According to Lemma 5, we have three main configurations to consider. Define

𝜙1(𝑝) :=
1 − ℎ𝑤𝑏 − (1 + 𝜆)𝑝
1 − ℎ𝑤𝑏 − ℎ𝑤𝑎

and 𝜙2(𝑝) :=
1 − ℎ𝑤𝑏 + 𝜆 − (1 + 𝜆)𝑝

1 − ℎ𝑤𝑏 − ℎ𝑤𝑎

,

we can easily verify that, i. if 𝑞 < 𝜙1(𝑝), the number of type-𝑎1 and 𝑏2 women exceeds the number of type-

𝑎 men while the number of type-𝑏 men exceeds the number of type-𝑎2 and 𝑏1 women; ii. if 𝑞 ⩾ 𝜙2(𝑝),
the number of type-𝑎 men exceeds the number of type-𝑎1 and 𝑏2 women while the number of type-𝑎2

and 𝑏1 women exceeds the number of type-𝑏 men; and iii. if 𝑞 ∈ [𝜙1(𝑝), 𝜙2(𝑝)), the number of type-𝑎

men exceeds the number of type-𝑎1 and 𝑏2 women and the number of type-𝑏 men exceeds the number of

type-𝑎2 and 𝑏1 women. Let us characterizes the stable matching in each of those three configurations.

If 𝑞 < 𝜙1(𝑝) (case i.) we must have a mass 𝑞(1 − ℎ𝑤𝑎) of 𝑏𝑎1 couples and a mass (1 − 𝑞)ℎ𝑤𝑏 of 𝑏𝑏1

couples. Moreover, at any stable matching the mass of 𝑎𝑎1 couples is min{(1 + 𝜆)𝑝, 𝑞ℎ𝑤𝑎}, i.e., (1 + 𝜆)𝑝 if

𝑞 ⩾ (1 + 𝜆)𝑝/ℎ𝑤𝑎 =: 𝜙1(𝑝) (note that both 𝜙1(𝑝) and 𝜙1(𝑝) equal 1 for 𝑝 = ℎ𝑤𝑎/(1 + 𝜆)). In the latter case,

all 𝑎men are matched with 𝑎1 women such that the remaining 𝑎1 women and all𝑏2 womenwill be matched

with a 𝑏 man: we will have a mass 𝑞ℎ𝑤𝑎−(1+𝜆)𝑝 of 𝑏𝑎1 couples and a mass (1−𝑞) (1−ℎ𝑤𝑏) of 𝑏𝑏2 couples.
In the case 𝑞 < 𝜙1(𝑝), all the remaining 𝑎 men will be matched with 𝑏2 women and the residuals 𝑏2 women

with 𝑏 men: we will have a mass (1+𝜆)𝑝−𝑞ℎ𝑤𝑎 of 𝑎𝑏1 couples and a mass (1−𝑞) (1−ℎ𝑤𝑏) − (1+𝜆)𝑝+𝑞ℎ𝑤𝑎

of 𝑏𝑏2 couples.

If 𝑞 ⩾ 𝜙2(𝑝) (case ii.) we must have a mass 𝑞ℎ𝑤𝑎 of 𝑎𝑎1 couples and a mass (1 − 𝑞) (1 − ℎ𝑤𝑏) of 𝑎𝑏2
couples. Moreover, at any stable matching the mass of 𝑏𝑏1 couples is min{(1 + 𝜆) (1 − 𝑝), (1 − 𝑞)ℎ𝑤𝑏},
i.e., (1 + 𝜆) (1 − 𝑝) if 𝑞 < 1 − (1 + 𝜆) (1 − 𝑝)/ℎ𝑤𝑏 =: 𝜙2(𝑝) (note that both 𝜙2(𝑝) and 𝜙2(𝑝) equal 0 for
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𝑝 = 1 − ℎ𝑤𝑏/(1 + 𝜆)). In the latter case, all 𝑏 men are matched with 𝑏1 women such that the remaining 𝑏1

women and all 𝑎2 womenwill bematchedwith a 𝑎man: wewill have amass (1−𝑞)ℎ𝑤𝑏−(1+𝜆) (1−𝑝) of 𝑎𝑏1
couples and amass𝑞(1−ℎ𝑤𝑎) of𝑎𝑎2 couples. In the case𝑞 ⩾ 𝜙2(𝑝), all the remaining𝑏menwill bematched

with 𝑎2 women and the residuals 𝑎2 women with 𝑎 men: we will have a mass (1 + 𝜆) (1 − 𝑝) − (1 − 𝑞)ℎ𝑤𝑏
of 𝑏𝑎2 couples and a mass 𝑎(1 − ℎ𝑤𝑎) − (1 + 𝜆) (1 − 𝑝) + (1 − 𝑞)ℎ𝑤𝑏 of 𝑎𝑎2 couples.

If 𝑞 ∈ [𝜙1(𝑝), 𝜙2(𝑝)) we must have a mass 𝑞ℎ𝑤𝑎 of 𝑎𝑎1 couples, a mass (1 −𝑞) (1 −ℎ𝑤𝑏) of 𝑎𝑏2, a mass

𝑞(1 − ℎ𝑤𝑎) of 𝑏𝑎1 couples and a mass (1 − 𝑞)ℎ𝑤𝑏 of 𝑏𝑏1 couples.

1

10

qt

pt

φ̃1(pt)

φ̃2(pt)

φ1(pt)

φ2(pt)

Φ1

Φ2

Φ3

Φ4

Φ5

Figure 12: Matching-outcome state space partition

Hence, the unit square might be partitioned into the five following regions (see Figure 12)

Φ1 :=
{
(𝑝, 𝑞) ∈ (0, 1)2 : 𝜙1(𝑝) ⩽ 𝑞

}
;

Φ2 :=
{
(𝑝, 𝑞) ∈ (0, 1)2 : 𝑞 < min{𝜙1(𝑝), 𝜙1(𝑝)}

}
;

Φ3 :=
{
(𝑝, 𝑞) ∈ (0, 1)2 : 𝜙1(𝑝) ⩽ 𝑞 < 𝜙2(𝑝)

}
;

Φ4 :=
{
(𝑝, 𝑞) ∈ (0, 1)2 : max{𝜙2(𝑝), 𝜙2(𝑝)} ⩽ 𝑞

}
;

Φ5 :=
{
(𝑝, 𝑞) ∈ (0, 1)2 : 𝑞 < 𝜙2(𝑝)

}
,

and the stable matching in each region is described in the following table.

Region 𝜇𝑎𝑎 𝜇𝑏𝑎 𝜇𝑏𝑏 𝜇𝑎𝑏

Φ1 𝑝 (1 + 𝜆) 𝑞 − 𝑝 (1 + 𝜆) 0 1 − 𝑞

Φ2 𝑞ℎ𝑤𝑎 𝑞(1 − ℎ𝑤𝑎) 1 − 𝑞 − 𝑝 (1 + 𝜆) + 𝑞ℎ𝑤𝑎 𝑝 (1 + 𝜆) − 𝑞ℎ𝑤𝑎

Φ3 𝑞ℎ𝑤𝑎 𝑞(1 − ℎ𝑤𝑎) (1 − 𝑞)ℎ𝑤𝑏 (1 − 𝑞) (1 − ℎ𝑤𝑏)

Φ4
𝑞 + (1 − 𝑞)ℎ𝑤𝑏
−(1 + 𝜆) (1 − 𝑝)

(1 + 𝜆) (1 − 𝑝)
−(1 − 𝑞)ℎ𝑤𝑏

(1 − 𝑞)ℎ𝑤𝑏 (1 − 𝑞) (1 − ℎ𝑤𝑏)

Φ5 𝑞 0 (1 + 𝜆) (1 − 𝑝) 1 − 𝑞 − (1 + 𝜆) (1 − 𝑝)
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Proof of Lemma 3. The results claimed in Lemma 3 can be directly deduced from the above description of

the stable matching when we fixℎ𝑤𝑎 = ℎ𝑤𝑏 = 0. Note that, in this case, we indeed have𝜙1(𝑝) = 1−(1+𝜆)𝑝
and 𝜙2(𝑝) = (1 + 𝜆) (1 − 𝑝). □

D.2 Proof of Proposition 5

Construction of the phase diagrams in Figure 6. Cultural evolution is driven by the following two-

dimensional dynamical system:

𝑝𝑡+1 = 𝜇𝑡𝑎𝑎 + (𝜇𝑡
𝑎𝑏

+ 𝜇𝑡
𝑏𝑎
)𝑝𝑡 ;

𝑞𝑡+1 = 𝜇𝑡𝑎𝑎 + (𝜇𝑡
𝑎𝑏

+ 𝜇𝑡
𝑏𝑎
)𝑞𝑡 .

In the following, for each region partitioning the unit square in Figure 12 we replace the proportions

𝜇𝑎𝑎 , 𝜇𝑎𝑏 and 𝜇𝑏𝑎 by those corresponding to the stable matching (see Section D.1). In the following analysis,

we will utilize the functions 𝑓 (𝑥 ;ℎ, 𝜆), 𝑘 (𝑥 ;ℎ, 𝜆) and 𝑔(𝑥 ;ℎ, 𝜆) defined in Appendix C.3.

If (𝑝𝑡 , 𝑞𝑡 ) ∈ Φ1:

𝑝𝑡+1 = (1 + 𝜆)𝑝𝑡 +
[
𝑞𝑡 − (1 + 𝜆)𝑝𝑡

]
𝑝𝑡 ;

𝑞𝑡+1 = (1 + 𝜆)𝑝𝑡 +
[
𝑞𝑡 − (1 + 𝜆)𝑝𝑡

]
𝑞𝑡 .

Since, in region Φ1, 𝑞
𝑡 ⩾ (1 + 𝜆)𝑝𝑡/ℎ𝑤𝑎 > (1 + 𝜆)𝑝𝑡 , we must have 𝑝𝑡+1 > (1 + 𝜆)𝑝𝑡 > 𝑝𝑡 such that 𝑝𝑡

increases over time. Moreover, 𝑞𝑡+1 > 𝑞𝑡 iff (1 + 𝜆)𝑝𝑡 (1 − 𝑝𝑡 ) > 𝑞𝑡 (1 − 𝑝𝑡 ) implying (1 + 𝜆)𝑝𝑡 > 𝑞𝑡 which

contradicts the condition 𝑞𝑡 ⩾ (1 + 𝜆)𝑝𝑡/ℎ𝑤𝑎 . Hence, 𝑞
𝑡
decreases over time.

If (𝑝𝑡 , 𝑞𝑡 ) ∈ Φ2:

𝑝𝑡+1 = 𝑞𝑡ℎ𝑤𝑎 +
[
(1 + 𝜆)𝑝𝑡 + 𝑞𝑡 (1 − 2ℎ𝑤𝑎)

]
𝑝𝑡 ;

𝑞𝑡+1 = 𝑞𝑡ℎ𝑤𝑎 +
[
(1 + 𝜆)𝑝𝑡 + 𝑞𝑡 (1 − 2ℎ𝑤𝑎)

]
𝑞𝑡 .

Straightforward algebra leads us to conclude that 𝑝𝑡+1 > 𝑝𝑡 iff 𝑞𝑡 > 𝑘 (𝑝𝑡 ;ℎ𝑤𝑎, 𝜆) and 𝑞𝑡+1 > 𝑞𝑡 iff 𝑞𝑡 >

𝑔(𝑝𝑡 ;ℎ𝑤𝑎, 𝜆).

If (𝑝𝑡 , 𝑞𝑡 ) ∈ Φ3:

𝑝𝑡+1 = 𝑞𝑡ℎ𝑤𝑎 +
[
1 − ℎ𝑤𝑏 + 𝑞𝑡 (ℎ𝑤𝑏 − ℎ𝑤𝑎)

]
𝑝𝑡 ;

𝑞𝑡+1 = 𝑞𝑡ℎ𝑤𝑎 +
[
1 − ℎ𝑤𝑏 + 𝑞𝑡 (ℎ𝑤𝑏 − ℎ𝑤𝑎)

]
𝑞𝑡 .

Straightforward algebra leads us to conclude that 𝑝𝑡+1 > 𝑝𝑡 iff

𝑞𝑡 >
𝑝𝑡ℎ𝑤𝑏

𝑝𝑡ℎ𝑤𝑏 + (1 − 𝑝𝑡 )ℎ𝑤𝑎

=: ℓ (𝑝𝑡 )
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and 𝑞𝑡+1 > 𝑞𝑡 iff ℎ𝑤𝑎 > ℎ𝑤𝑏 .

If (𝑝𝑡 , 𝑞𝑡 ) ∈ Φ4:

𝑝𝑡+1 = 𝑞𝑡 + (1 − 𝑞𝑡 )ℎ𝑤𝑏 − (1 + 𝜆) (1 − 𝑝𝑡 ) +
[
(1 + 𝜆)𝑝𝑡 + (1 − 𝑞𝑡 ) (1 − 2ℎ𝑤𝑏)

]
𝑝𝑡 ;

𝑞𝑡+1 = 𝑞𝑡 + (1 − 𝑞𝑡 )ℎ𝑤𝑏 − (1 + 𝜆) (1 − 𝑝𝑡 ) +
[
(1 + 𝜆)𝑝𝑡 + (1 − 𝑞𝑡 ) (1 − 2ℎ𝑤𝑏)

]
𝑞𝑡 .

Straightforward algebras lead us to conclude that 𝑝𝑡+1 > 𝑝𝑡 iff 𝑞𝑡 > 𝑓 (𝑝𝑡 ;ℎ𝑤𝑏, 𝜆) and 𝑞𝑡+1 > 𝑞𝑡 iff 𝑞𝑡 >

𝑔(𝑝𝑡 ;ℎ𝑤𝑏, 𝜆).

If (𝑝𝑡 , 𝑞𝑡 ) ∈ Φ5:

𝑝𝑡+1 = 𝑞𝑡 +
[
1 − 𝑞𝑡 − (1 + 𝜆) (1 − 𝑝𝑡 )

]
𝑝𝑡 ;

𝑞𝑡+1 = 𝑞𝑡 +
[
1 − 𝑞𝑡 − (1 + 𝜆) (1 − 𝑝𝑡 )

]
𝑞𝑡 .

Since, in regionΦ5, 1−𝑞𝑡 ⩾ (1−𝑞𝑡 )ℎ𝑤𝑏 > (1+𝜆) (1−𝑝𝑡 ), wemust have𝑞𝑡+1 > 𝑞𝑡 such that𝑞𝑡 increases over

time. Moreover, 𝑝𝑡+1 > 𝑝𝑡 iff 𝑞𝑡 > 𝑝𝑡
[
𝑞𝑡 + (1 + 𝜆) (1 − 𝑝𝑡 )

]
implying 1−𝑞𝑡 < 1−𝑝𝑡 (1+𝜆) < (1+𝜆) (1−𝑝𝑡 )

which contradicts the condition 1 − 𝑞𝑡 > (1 + 𝜆) (1 − 𝑝𝑡 )/ℎ𝑤𝑏 . Hence, 𝑝𝑡 decreases over time.

We are now in the position to draw the phase diagram associated with the joint dynamics of (𝑝𝑡 , 𝑞𝑡 ).
To that end, let us first describe the locus of stationarity of 𝑞𝑡 (𝑞𝑞 locus) and 𝑝𝑡 (𝑝𝑝 locus) and discuss their

stability in the three configuration listed in Proposition 5.

When ℎ𝑤𝑎 > ℎ𝑤𝑏 the curve 𝑞𝑡 = 𝑔(𝑝𝑡 ;ℎ𝑤𝑎, 𝜆) belongs to region Φ2 while 𝑞𝑡 > 𝑔(𝑝𝑡 ;ℎ𝑤𝑏, 𝜆) for all
(𝑝𝑡 , 𝑞𝑡 ) ∈ Φ4. To see this, note that 𝑔(𝑝𝑡 ;ℎ𝑤𝑎, 𝜆) reaches 1 at 𝑝𝑡 = ℎ𝑤𝑎/(1+𝜆) exactly as 𝜙1(𝑝𝑡 ) and 𝜙1(𝑝𝑡 ),
and has a slope more negative than 𝜙1(𝑝𝑡 ); while 𝑔(𝑝𝑡 ;ℎ𝑤𝑏, 𝜆) reaches 0 at 𝑝𝑡 = 1 − ℎ𝑤𝑏/(1 + 𝜆) exactly
as 𝜙2(𝑝𝑡 ) and 𝜙2(𝑝𝑡 ), and has a slope more negative than 𝜙2(𝑝𝑡 ). Hence, when ℎ𝑤𝑎 > ℎ𝑤𝑏 , the locus

of stationarity of 𝑞𝑡 (𝑞𝑞 locus) corresponds to the curve 𝑞𝑡 = 𝑔(𝑝𝑡 ;ℎ𝑤𝑎, 𝜆) and is globally stable. When

ℎ𝑤𝑎 = ℎ𝑤𝑏 , the curve 𝑞
𝑡 = 𝜙1(𝑝𝑡 ) (resp., 𝑞𝑡 = 𝜙2(𝑝𝑡 )) exactly corresponds to the curve 𝑞𝑡 = 𝑔(𝑝𝑡 ;ℎ𝑤𝑎, 𝜆)

(resp., 𝑞𝑡 = 𝑔(𝑝𝑡 ;ℎ𝑤𝑏, 𝜆)) and 𝑞𝑡+1 = 𝑞𝑡 for all (𝑞𝑡 , 𝑝𝑡 ) ∈ Φ3. Hence, the 𝑞𝑞 locus corresponds to the whole

region Φ3.

Regarding the 𝑝𝑝 locus———and in the case where bothℎ𝑤𝑎 andℎ𝑤𝑏 are positive———note that 𝑘 (𝑝𝑡 ;ℎ𝑤𝑎, 𝜆)
(resp., 𝑓 (𝑝𝑡 ;ℎ𝑤𝑏, 𝜆)) is globally concave (resp., globally convex) for 𝑝𝑡 ∈ [0, 1]. Moreover the slope of

𝑘 (𝑝𝑡 ;ℎ𝑤𝑎, 𝜆) (resp., 𝑓 (𝑝𝑡 ;ℎ𝑤𝑏, 𝜆)) at 𝑝𝑡 = 0 (resp., 𝑝𝑡 = 1) equals 1/ℎ𝑤𝑎 (resp., 1/ℎ𝑤𝑏 ) which is positive and

lower than the slope of 𝜙1(𝑝𝑡 ) (resp., 𝜙2(𝑝𝑡 )). Finally, 𝑘 (𝑝𝑡 ;ℎ𝑤𝑎, 𝜆) (resp., 𝑓 (𝑝𝑡 ;ℎ𝑤𝑏, 𝜆)) equals 0 (resp., 1)

when 𝑝𝑡 = 0 (resp., 𝑝𝑡 = 1) and 𝑝𝑡 = 1/(1 + 𝜆) (resp., 𝑝𝑡 = 𝜆/(1 + 𝜆)) while 𝜙1(𝑝𝑡 ) (resp., 𝜙2(𝑝𝑡 )) equals
0 (resp., 1) when 𝑝𝑡 = (1 − ℎ𝑤𝑏)/(1 + 𝜆) < 1/(1 + 𝜆) (resp., 𝑝𝑡 = (ℎ𝑤𝑎 + 𝜆)/(1 + 𝜆) > 𝜆/(1 + 𝜆)). Thus
𝑘 (𝑝𝑡 ;ℎ𝑤𝑎, 𝜆) (resp., 𝑓 (𝑝𝑡 ;ℎ𝑤𝑏, 𝜆)) crosses 𝜙1(𝑝𝑡 ) (resp., 𝜙2(𝑝𝑡 )) once. Hence, the 𝑝𝑝 locus is constituted by

the curve 𝑞𝑡 = 𝑘 (𝑝𝑡 ;ℎ𝑤𝑎, 𝜆) in region Φ2, the curve 𝑞
𝑡 = ℓ (𝑝𝑡 ) in region Φ3 and the curve 𝑞

𝑡 = 𝑓 (𝑝𝑡 ;ℎ𝑤𝑏, 𝜆)
in region Φ4. The locus is continuous (since the proportions of each type of couple at the stable matching

are continuous) and it is globally unstable. When ℎ𝑤𝑎 = ℎ𝑤𝑏 = 0, 𝑘 (𝑝𝑡 ; 0, 𝜆) (resp., 𝑓 (0; 0, 𝜆)) exactly
corresponds to 𝜙1(𝑝𝑡 ) (resp., 𝜙2(𝑝𝑡 )). Hence 𝑝𝑡 is decreasing (resp., increasing) when 𝑞𝑡 < 𝜙1(𝑝𝑡 ) (resp.,

40



1

10

qt

pt

(a) ℎ𝑤𝑎 = ℎ𝑤𝑏 = 0

1

10

qt

pt

pp

(b) ℎ𝑤𝑎 = ℎ𝑤𝑏 ∈ (0, 1)

1

10

qt

pt

qq
pp

(c) ℎ𝑤𝑎 > ℎ𝑤𝑏 ∈ (0, 1)

Figure 13: The cultural dynamics

𝑞𝑡 ⩾ 𝜙2(𝑝𝑡 )). Moreover, 𝑝𝑡+1 = 𝑝𝑡 for all (𝑞𝑡 , 𝑝𝑡 ) ∈ Φ3. Hence, the 𝑝𝑝 locus corresponds to the whole

region Φ3.

The phase diagrams in Figure 13 summarize these results. As shown on this Figure, when ℎ𝑤𝑎 > ℎ𝑤𝑏 :

(0, 0), (1, 1) and the crossing point between the 𝑝𝑝 locus and the 𝑞𝑞 locus (𝑟, 𝑟 ) with 𝑟 = 1−ℎ𝑤𝑎

2(1−ℎ𝑤𝑎 )+𝜆 < 1/2
are steady states. In the case ℎ𝑤𝑎 = ℎ𝑤𝑏 > 0, the steady states (0, 0) and (1, 1) coexist with the stable set{
(𝑝, 𝑞) ∈ [0, 1]2 : 𝑞 ∈ (𝜙1(𝑝), 𝜙2(𝑝)) and 𝑞 = 𝑝

}
. Finally, when ℎ𝑤𝑎 = ℎ𝑤𝑏 = 0, the steady states (0, 0) and

(1, 1) coexist with the stable set {(𝑝, 𝑞) ∈ Φ3}.

Proof of Proposition 5. We successively address the three cases listed in Proposition 5.

1. ℎ𝑤𝑎 = ℎ𝑤𝑏 = 0. Consider the region 𝑇𝜀 in which 𝑞𝑡 ⩽ 𝜙1(𝑝𝑡 ) − 𝜀. For any (𝑝𝑡 , 𝑞𝑡 ) ∈ 𝑇𝜀 , 𝑝
𝑡+1 < 𝑝𝑡

and 𝑞𝑡+1 < 𝑞𝑡 . Hence, by the contraction mapping theorem (𝑝𝑡 , 𝑞𝑡 ) converges to (0, 0) as time

approaches infinity and (0, 0) is asymptotically stable. Since 𝜀 is arbitrarily small, we can say

that for any (𝑝0, 𝑞0) such that 𝑞0 < 𝜙1(𝑝0), (𝑝𝑡 , 𝑞𝑡 ) converges to (0, 0) as time approaches in-

finity. By applying the same logic, we can show that (1, 1) is asymptotically stable, and for any

(𝑝0, 𝑞0) such that 𝑞0 > 𝜙2(𝑝0), (𝑝𝑡 , 𝑞𝑡 ) converges to (1, 1) as time approaches infinity. The set{
(𝑝𝑡 , 𝑞𝑡 ) ∈ [0, 1]2 : 𝑞𝑡 ∈

(
𝜙1(𝑝𝑡 ), 𝜙2(𝑝𝑡 )

)}
is a stable set because any state is a steady state in this set

and we can construct an open neighborhood N , such that N ∩ [0, 1]2 is the set itself.

2. ℎ𝑤𝑎 = ℎ𝑤𝑏 = ℎ𝑤 > 0. We first check that

{
(𝑝𝑡 , 𝑞𝑡 ) ∈ [0, 1]2 : 𝑞𝑡 ∈

(
𝜙1(𝑝𝑡 ), 𝜙2(𝑝𝑡 )

)
and 𝑞𝑡 = 𝑝𝑡

}
is a

stable set. Consider (𝑝𝑡 , 𝑞𝑡 ) ∈ Φ3, we have Δ
𝑡+1 := 𝑝𝑡+1 − 𝑞𝑡+1 = (1 − ℎ𝑤) (𝑝𝑡 − 𝑞𝑡 ) = (1 − ℎ𝑤)Δ𝑡

.

Hence, Δ𝑡
converges to 0. Moreover, when 𝑝𝑡 ∈

(
ℎ𝑤

1+𝜆 ,
ℎ𝑤+𝜆
1+𝜆

)
, the straight line 𝑝𝑡 = 𝑞𝑡 belongs to

Φ3. Hence, for any (𝑝0, 𝑞0) ∈
{
(𝑝, 𝑞) ∈ Φ3 : 𝑝 ∈

(
ℎ𝑤

1+𝜆 ,
ℎ𝑤+𝜆
1+𝜆

)}
we have lim𝑡→∞ 𝑝𝑡 = lim𝑡→∞ 𝑞𝑡 = 𝑞0.

Let us now verify that (0, 0) and (1, 1) are attracting. Consider the neighborhood of (0, 0): 𝑇𝜀 :={
(𝑝, 𝑞) ∈ [0, 𝜀]2

}
. Clearly, there exists 𝜀 sufficiently low such that, when (𝑝0, 𝑞0) belongs to𝑇𝜀 and is

above the 𝑝𝑝 curve———(𝑝0, 𝑞0) ∈
{
(𝑝, 𝑞) ∈ [0, 𝜀]2 : 𝑞𝑡 ⩾ 𝑘 (𝑝𝑡 ;ℎ𝑤𝑎, 𝜆)

}
———at some 𝑡 , (𝑝𝑡 , 𝑞𝑡 ) will enter
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the region below the 𝑝𝑝 curve. Then, it will converge to (0, 0). We can use similar arguments to

show that (1, 1) is attracting.

3. ℎ𝑤𝑎 > ℎ𝑤𝑏 ∈ (0, 1). The arguments developed in the previous point allow us to show that (0, 0) and
(1, 1) are attracting. We now have to check the local stability of the interior steady state (𝑟, 𝑟 ) with
𝑟 =

1−ℎ𝑤𝑎

2(1−ℎ𝑤𝑎 )+𝜆 . We know that this steady state belongs to region Φ2 then we check the Jacobian

matrix of the dynamics in region Φ2 evaluated at (𝑟, 𝑟 ), which is

J |𝑝=𝑟,𝑞=𝑟 =
[ (1−ℎ𝑤𝑎 ) (3+2𝜆−2ℎ𝑤𝑎 )

2(1−ℎ𝑤𝑎 )+𝜆
1−ℎ𝑤𝑎 (1−𝜆)
2(1−ℎ𝑤𝑎 )+𝜆

(1−ℎ𝑤𝑎 ) (1+𝜆)
2(1−ℎ𝑤𝑎 )+𝜆

3+𝜆−ℎ𝑤𝑎 (5−2ℎ𝑤𝑎 )
2(1−ℎ𝑤𝑎 )+𝜆

]
.

The eigenvalues are given by 2 − ℎ𝑤𝑎 > 1 and 1 − ℎ𝑤𝑎 < 1. Hence, (𝑟, 𝑟 ) is a saddle point.

□

E Proofs and omitted details in Section 5

E.1 Proof of Proposition 6

Proof of Proposition 6. We look for steady states 𝑝∗ and 𝑞∗. We first show that there is no steady state

such that 𝑝∗ ≠ 𝑞∗. Suppose there is. Without loss of generality, by symmetry, suppose 𝑝∗ > 𝑞∗; by cultural

substitutability, 𝑑 (𝑝∗) < 𝑑 (𝑞∗) and 𝑑 (1 − 𝑝∗) > 𝑑 (1 − 𝑞∗). The cultural evolution equations at the steady

state become

0 = 𝑞∗𝑑 (𝑝∗) (1 − 𝑝∗) − (1 − 𝑝∗)𝑑 (1 − 𝑝∗)𝑝∗;

0 = 𝑞∗𝑑 (𝑞∗) (1 − 𝑞∗) − (1 − 𝑝∗)𝑑 (1 − 𝑞∗)𝑞∗.

Equating the two equations yields

𝑞∗ [𝑑 (𝑝∗) (1 − 𝑝∗) − 𝑑 (𝑞∗) (1 − 𝑞∗)] = (1 − 𝑝∗) [𝑑 (1 − 𝑝∗)𝑝∗ − 𝑑 (1 − 𝑞∗)𝑞∗] .

By 𝑝∗ > 𝑞∗, because 𝑑 (𝑝∗) < 𝑑 (𝑞∗), the term in the square bracket on the left-hand side of the equation is

negative, and because 𝑑 (1 − 𝑝∗) > 𝑑 (1 − 𝑞∗), the term in the square bracket on the right-hand side of the

equation is positive. Hence, the equation cannot hold, and we cannot have a steady state such that 𝑝∗ > 𝑞∗

(or 𝑝∗ < 𝑞∗ by symmetry).

We now consider the gender-symmetric steady states such that 𝑝∗ = 𝑞∗ := 𝑟 . The steady state must

satisfy

𝑟 (1 − 𝑟 ) [𝑑 (𝑟 ) − 𝑑 (1 − 𝑟 )] = 0.

The equation holds when 𝑟 = 0, 𝑟 = 1, or 𝑟 = 1/2. First, we show that (0, 0) and (1, 1) are unstable. Take
any 𝑝𝑡 = 𝑞𝑡 := 𝑟0. The system of equations becomes

𝑝𝑡+1 − 𝑝𝑡 = 𝑟0(1 − 𝑟0) [𝑑 (𝑟0) − 𝑑 (1 − 𝑟0)];
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𝑞𝑡+1 − 𝑞𝑡 = 𝑟0(1 − 𝑟0) [𝑑 (𝑟0) − 𝑑 (1 − 𝑟0)] .

Both are positive if 𝑟0 < 1/2 and negative if 𝑟0 > 1/2. Hence, (0, 0) and (1, 1) cannot be stable. Next, we
prove that (1/2, 1/2) is stable. Maintain the assumption 𝑝𝑡 ⩾ 𝑞𝑡 . When 𝑝𝑡 > 1/2,

𝑝𝑡+1 − 𝑝𝑡 = (1 − 𝑝𝑡 ) [𝑞𝑡𝑑 (𝑝𝑡 ) − 𝑝𝑡𝑑 (1 − 𝑝𝑡 )] < 0,

where the inequality is derived from 𝑑 (𝑝𝑡 ) < 𝑑 (1 − 𝑝𝑡 ) and 𝑞𝑡 ⩽ 𝑝𝑡 . Similarly, when 𝑞𝑡 < 1/2,

𝑞𝑡+1 − 𝑞𝑡 = 𝑞𝑡 [𝑑 (𝑞𝑡 ) (1 − 𝑞𝑡 ) − (1 − 𝑝𝑡 )𝑑 (1 − 𝑞𝑡 )] > 0.

When 𝑝𝑡 < 1/2, 𝑞𝑡𝑑 (𝑝𝑡 ) − 𝑝𝑡𝑑 (1 − 𝑝𝑡 ) > 0 when 𝑝𝑡 = 𝑞𝑡 , so by continuity of 𝑑 (·), 𝑝𝑡+1 − 𝑝𝑡 is positive

for (𝑝𝑡 , 𝑞𝑡 ) sufficiently close to (1/2, 1/2). Similarly, when 𝑞𝑡 > 1/2, 𝑞𝑡+1 − 𝑞𝑡 is negative for (𝑝𝑡 , 𝑞𝑡 )
sufficiently close to (1/2, 1/2), because 𝑑 (𝑞𝑡 ) (1 − 𝑞𝑡 ) − (1 − 𝑝𝑡 )𝑑 (1 − 𝑞𝑡 ) < 0 when 𝑝𝑡 = 𝑞𝑡 .

We can analogously derive results on the sign of 𝑝𝑡+1 − 𝑝𝑡 and 𝑞𝑡+1 − 𝑞𝑡 for the case 𝑝𝑡 ⩽ 𝑞𝑡 .

The Lyapunov function that helps prove global stability is

V(𝑝, 𝑞) =



(𝑞 − 1/2)2 if 𝑝 ⩾ 𝑞 and 𝑝 + 𝑞 < 1

(𝑝 − 1/2)2 if 𝑝 ⩾ 𝑞 and 𝑝 + 𝑞 ⩾ 1

(𝑞 − 1/2)2 if 𝑝 < 𝑞 and 𝑝 + 𝑞 ⩾ 1

(𝑝 − 1/2)2 if 𝑝 < 𝑞 and 𝑝 + 𝑞 < 1

The function satisfies: (i) V(1/2, 1/2) = 0, (ii) V(𝑝𝑡+1, 𝑞𝑡+1) < V(𝑝𝑡 , 𝑞𝑡 ) for all (𝑝𝑡 , 𝑞𝑡 ) ≠ (1/2, 1/2), and
(iii)V(𝑝𝑡 , 𝑞𝑡 ) > 0 for all (𝑝𝑡 , 𝑞𝑡 ), and (iv) ∥(𝑝, 𝑞)∥ → ∞,V(𝑝, 𝑞) → ∞. In addition, the dynamic system is

Lipschitz continuous, because𝑑 (·) is Lipschitz by assumption (𝑑 (·) being differentiable and bounded on the
closed interval [0, 1] implies a bounded first derivative, which implies Lipshitz continuity). By Theorem

1.4 of Bof et al. (2018), the existence of such a Lyapunov function implies global asymptotic stability. □

E.2 Stable matching with mixtures of homophilic and heterophilic proposers and re-
ceivers when ℎ𝑚𝑎 = ℎ𝑚𝑏 = ℎ𝑚 and ℎ𝑤𝑎 = ℎ𝑤𝑏 = ℎ𝑤

The following characterization is needed for the Proof of Proposition 7. Consider the stable matching

with mass 𝑝 of type-𝑎 men and mass 𝑞 of type-𝑏 women. Homophilic men and women of the same type,

𝑀𝜃1 and𝑊𝜃1 , want to be matched together. Hence, at any stable matching the mass of 𝑎1𝑎1 couples is

min{𝑝𝑡ℎ𝑚, 𝑞𝑡ℎ𝑤}, i.e., 𝑝𝑡ℎ𝑚 if 𝑞 > ℎ𝑚𝑝/ℎ𝑤 =: ℎ1(𝑝), and 𝑞𝑡ℎ𝑤 otherwise. The mass of 𝑏1𝑏1 couples is

min{(1−𝑝𝑡 )ℎ𝑚, (1−𝑞𝑡 )ℎ𝑤}, i.e., (1−𝑝𝑡 )ℎ𝑚 if 𝑞𝑡 < 1−ℎ𝑚 (1−𝑝𝑡 )/ℎ𝑤 =: ℎ2(𝑝𝑡 ), and (1−𝑞𝑡 )ℎ𝑤 otherwise.

Moreover, for 𝜃 ≠ 𝜃 ′, heterophilic men and women of the opposite types, 𝑀𝜃2 and𝑊𝜃 ′
2
, want to be

matched together. Hence, at any stable matching the mass of 𝑎𝑏 couples must be at least{
𝑝𝑡 (1 − ℎ𝑚) if 𝑞𝑡 < 1 −

(
1−ℎ𝑚
1−ℎ𝑤

)
𝑝𝑡 =: ℎ3(𝑝𝑡 ),

(1 − 𝑞𝑡 ) (1 − ℎ𝑤) otherwise.
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Figure 14: Partitioning regions for characterization of stable matching

and the mass of 𝑏𝑏 couples must be at least{
(1 − 𝑝𝑡 ) (1 − ℎ𝑚) if 𝑞𝑡 >

(
1−ℎ𝑚
1−ℎ𝑤

)
(1 − 𝑝𝑡 ) =: ℎ4(𝑝𝑡 ),

𝑞𝑡 (1 − ℎ𝑤) otherwise.

As Figure 14a depicts, the unit square can be partitioned into nine disjoint sets according to the position

of (𝑝𝑡 , 𝑞𝑡 ) with respect to the four functions ℎ1(𝑝𝑡 ), ℎ2(𝑝𝑡 ), ℎ3(𝑝𝑡 ) and ℎ4(𝑝𝑡 ).
Below, we describe the stable matching in each region. Except region Γ5, there is a unique stable

matching, summarized in the table below.

Region 𝜇𝑎𝑎 𝜇𝑏𝑎 𝜇𝑏𝑏 𝜇𝑎𝑏

Γ1 𝑝 − (1 − 𝑞) (1 − ℎ𝑤) 1 − 𝑝 − (1 − 𝑞)ℎ𝑤 (1 − 𝑞)ℎ𝑤 (1 − 𝑞) (1 − ℎ𝑤)
Γ2 𝑝ℎ𝑚 𝑞 − 𝑝ℎ𝑚 1 − 𝑞 − 𝑝 (1 − ℎ𝑚) 𝑝 (1 − ℎ𝑚)
Γ3 𝑝ℎ𝑚 𝑞 − 𝑝ℎ𝑚 1 − 𝑞 − 𝑝 (1 − ℎ𝑚) 𝑝 (1 − ℎ𝑚)
Γ4 𝑝 − (1 − 𝑞) (1 − ℎ𝑤) 1 − 𝑝 − (1 − 𝑞)ℎ𝑤 (1 − 𝑞)ℎ𝑤 (1 − 𝑞) (1 − ℎ𝑤)
Γ6 𝑞ℎ𝑤 𝑞(1 − ℎ𝑤) 1 − 𝑝 − 𝑞(1 − ℎ𝑤) 𝑝 − 𝑞ℎ𝑤

Γ7 𝑞 − (1 − 𝑝) (1 − ℎ𝑚) (1 − 𝑝) (1 − ℎ𝑚) (1 − 𝑝)ℎ𝑚 1 − 𝑞 − (1 − 𝑝)ℎ𝑚
Γ8 𝑞 − (1 − 𝑝) (1 − ℎ𝑚) (1 − 𝑝) (1 − ℎ𝑚) (1 − 𝑝)ℎ𝑚 1 − 𝑞 − (1 − 𝑝)ℎ𝑚
Γ9 𝑞ℎ𝑤 𝑞(1 − ℎ𝑤) 1 − 𝑝 − 𝑞(1 − ℎ𝑤) 𝑝 − 𝑞ℎ𝑤

If (𝑝, 𝑞) ∈ Γ5, MOSM and WOSM do not coincide. Define 𝑔𝑤 (𝑝) := (1 − ℎ𝑤 − 𝑝)/(1 − 2ℎ𝑤) and

𝑔𝑚 (𝑝) := 1 − ℎ𝑚 − 𝑝 (1 − 2ℎ𝑚). The stable matching in Γ5 is described as follows.
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𝜇𝑎𝑎 𝜇𝑏𝑎 𝜇𝑏𝑏 𝜇𝑎𝑏

WOSM

𝑞 < 𝑔𝑤 (𝑝) 𝑞ℎ𝑤 𝑞(1 − ℎ𝑤) 1 − 𝑝 − 𝑞(1 − ℎ𝑤) 𝑝 − 𝑞ℎ𝑤

𝑞 ⩾ 𝑔𝑤 (𝑝) 𝑝 − (1 − 𝑞) (1 − ℎ𝑤) 1 − 𝑝 − (1 − 𝑞)ℎ𝑤 (1 − 𝑞)ℎ𝑤 (1 − 𝑞) (1 − ℎ𝑤)
MOSM

𝑞 < 𝑔𝑚 (𝑝) 𝑞 − (1 − 𝑝) (1 − ℎ𝑚) (1 − 𝑝) (1 − ℎ𝑚) (1 − 𝑝)ℎ𝑚 1 − 𝑞 − (1 − 𝑝)ℎ𝑚
𝑞 ⩾ 𝑔𝑚 (𝑝) 𝑝ℎ𝑚 𝑞 − 𝑝ℎ𝑚 1 − 𝑞 − 𝑝 (1 − ℎ𝑚) 𝑝 (1 − ℎ𝑚)

As depicted in Figure 14b, 𝑔𝑤 (𝑝𝑡 ) passes through the crossing point betweenℎ1(𝑝𝑡 ) andℎ3(𝑝𝑡 ) and the
crossing point between ℎ2(𝑝𝑡 ) and ℎ4(𝑝𝑡 ) while 𝑔𝑚 (𝑝𝑡 ) passes through the crossing point between ℎ1(𝑝𝑡 )
and ℎ4(𝑝𝑡 ) and the crossing point between ℎ2(𝑝𝑡 ) and ℎ3(𝑝𝑡 ). Moreover, 𝑔𝑤 (𝑝𝑡 ) and 𝑔𝑚 (𝑝𝑡 ) intersect at
(1/2, 1/2).

E.3 Proof of Proposition 7

Proof of Proposition 7. Suppose there are homophilic receivers (0 < ℎ𝑤 ⩽ 1) in addition to a strict

mixture of homophilic and heterophilic proposers.

Rearrange the steady state equations (15) and (16):

𝜇∗𝑎𝑎
𝜇∗
𝑏𝑏

=
𝑑 (1 − 𝑝∗)
𝑑 (𝑝∗)

𝑝∗

1 − 𝑝∗
;

𝜇∗𝑎𝑎
𝜇∗
𝑏𝑏

=
𝑑 (1 − 𝑞∗)
𝑑 (𝑞∗)

𝑞∗

1 − 𝑞∗
.

Since the right-hand sides of the equations are strictly increasing, 𝑝∗ = 𝑞∗ must hold in a steady state.

According to Figure 14, the steady states must lie in regions Γ4, Γ5, and/or Γ6.

Consider the stable matching characterized by Figure 14. When (𝑝𝑡 , 𝑞𝑡 ) ∈ Γ5 ∩ {𝑞𝑡 ⩾ 𝑔𝑚 (𝑝𝑡 )}, the
evolution is

𝑝𝑡+1 − 𝑝𝑡 = 𝑝𝑡ℎ𝑚𝑑 (𝑝𝑡 ) (1 − 𝑝𝑡 ) − [1 − 𝑞𝑡 − 𝑝𝑡 (1 − ℎ𝑚)]𝑑 (1 − 𝑝𝑡 )𝑝𝑡 ; (28)

𝑞𝑡+1 − 𝑞𝑡 = 𝑝𝑡ℎ𝑚𝑑 (𝑞𝑡 ) (1 − 𝑞𝑡 ) − [1 − 𝑞𝑡 − 𝑝𝑡 (1 − ℎ𝑚)]𝑑 (1 − 𝑞𝑡 )𝑞𝑡 . (29)

. When (𝑝𝑡 , 𝑞𝑡 ) ∈ Γ5 ∩ {𝑞𝑡 < 𝑔𝑚 (𝑝𝑡 )}, the evolution is

𝑝𝑡+1 − 𝑝𝑡 = [𝑞𝑡 − (1 − 𝑝𝑡 ) (1 − ℎ𝑚)]𝑑 (𝑝𝑡 ) (1 − 𝑝𝑡 ) − (1 − 𝑝𝑡 )ℎ𝑚𝑑 (1 − 𝑝𝑡 )𝑝𝑡 ;

𝑞𝑡+1 − 𝑞𝑡 = [𝑞𝑡 − (1 − 𝑝𝑡 ) (1 − ℎ𝑚)]𝑑 (𝑞𝑡 ) (1 − 𝑞𝑡 ) − (1 − 𝑝𝑡 )ℎ𝑚𝑑 (1 − 𝑞𝑡 )𝑞𝑡 .

The Jacobian matrix near (1/2, 1/2) is continuous and evaluated at (1/2, 1/2) is

J |𝑝=1/2,𝑞=1/2 =
[
1 + 1

2ℎ𝑚𝑑
′( 12 ) + ( 12 − ℎ𝑚)𝑑 ( 12 )

1
2𝑑 (

1
2 )

1
2𝑑 (

1
2 ) 1 + 1

2ℎ𝑚𝑑
′( 12 ) + ( 12 − ℎ𝑚)𝑑 ( 12 )

]
. (30)

The two eignenvalues are 1 −ℎ𝑚 (𝑑 (1/2) −𝑑 ′(1/2)/2) and 1 −ℎ𝑚 (𝑑 (1/2) −𝑑 ′(1/2)/2) +𝑑 (1/2). Because
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𝑑 ′ < 0, the first eigenvalue is less than 1. Assumption 2 guarantees that the first eigenvalue is larger than

-1 regardless of the value of ℎ𝑚 . If the second eigenvalue is also less than 1 (it must be larger than -1

given Assumption 2), then (1/2, 1/2) is asymptotically stable; otherwise, it is a saddle point. The second

eigenvalue is less than 1 if

ℎ𝑚 >
𝑑 (1/2)

𝑑 (1/2) − 𝑑 ′(1/2)/2 ,

which is a modification of the specified condition stated in the proposition for (1/2, 1/2) to be stable.

Suppose all receivers are heterophilic (and there is a strict mixture of homophilic and heterophilic

proposers). Suppose 𝑞𝑡 < (1 − 𝑝𝑡 ) (1 − ℎ𝑚). The evolution becomes

𝑝𝑡+1 − 𝑝𝑡 = −(1 − 𝑝𝑡 − 𝑞𝑡 )𝑑 (1 − 𝑝𝑡 )𝑝𝑡 < 0;

𝑞𝑡+1 − 𝑞𝑡 = −(1 − 𝑝𝑡 − 𝑞𝑡 )𝑑 (1 − 𝑞𝑡 )𝑞𝑡 < 0.

Hence, (0, 0) is an asymptotically stable steady state by the contraction mapping theorem. Similarly, when

receivers are all heterophilic, (1, 1) is also an asymptotically stable steady state. □

E.4 Stable matching for nonhomophilic cultural groups

Homophilic men and women of the same type, 𝑀𝜃1 and𝑊𝜃1 , want to be matched together. Hence, at any

stable matching the mass of 𝑎1𝑎1 couples is min{𝑝𝑡ℎ𝑎, 𝑞𝑡ℎ𝑎}, i.e., 𝑝𝑡ℎ𝑎 if 𝑞𝑡 ⩾ 𝑝𝑡 and 𝑞𝑡ℎ𝑎 otherwise. The

mass of 𝑏1𝑏1 couples ismin{(1 − 𝑝𝑡 )ℎ𝑏, (1 − 𝑞𝑡 )ℎ𝑏}, i.e., (1 − 𝑝𝑡 )ℎ𝑏 if 𝑞𝑡 < 𝑝𝑡 , and (1 − 𝑞𝑡 )ℎ𝑏 otherwise.

Moreover, for 𝜃 ≠ 𝜃 ′, heterophilic men and women of the opposite types, 𝑀𝜃2 and𝑊𝜃 ′
2
, want to be

matched together. Hence, at any stable matching the mass of 𝑎𝑏 couples must be at least min{𝑝𝑡 (1 −
ℎ𝑎), (1 − 𝑞𝑡 ) (1 − ℎ𝑏)}, or equivalently{

𝑝𝑡 (1 − ℎ𝑎) if 𝑞𝑡 < 1 −
(
1−ℎ𝑎
1−ℎ𝑏

)
𝑝𝑡 =: ℎ̃(𝑝𝑡 ),

(1 − 𝑞𝑡 ) (1 − ℎ𝑏) otherwise.

and the mass of 𝑏𝑎 couples must be at leastmin{(1 − 𝑝𝑡 ) (1 − ℎ𝑏), 𝑞𝑡 (1 − ℎ𝑎)}, or equivalently{
(1 − 𝑝𝑡 ) (1 − ℎ𝑏) if 𝑞𝑡 ⩾

(
1−ℎ𝑏
1−ℎ𝑎

)
(1 − 𝑝𝑡 ) =: ℎ̂(𝑝𝑡 ),

𝑞𝑡 (1 − ℎ𝑎) otherwise.

The unit square can be partitioned in six disjoint sets according to the position of 𝑞𝑡 with respect to 𝑝𝑡 ,

ℎ̂(𝑝𝑡 ) and ℎ̃(𝑝𝑡 ):

Θ1 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : 𝑞𝑡 ⩾ 𝑝𝑡 and 𝑞𝑡 ⩾ ℎ̂(𝑝𝑡 )

}
;

Θ2 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : 𝑞𝑡 ⩾ 𝑝𝑡 and 𝑞𝑡 ∈

[
ℎ̃(𝑝𝑡 ), ℎ̂(𝑝𝑡 )

)}
;

Θ3 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : 𝑞𝑡 ⩾ 𝑝𝑡 and 𝑞𝑡 < ℎ̃(𝑝𝑡 )

}
;

Θ4 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : 𝑞𝑡 < 𝑝𝑡 and 𝑞𝑡 ⩾ ℎ̃(𝑝𝑡 )

}
;
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Θ5 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : 𝑞𝑡 < 𝑝𝑡 and 𝑞𝑡 ∈

[
ℎ̂(𝑝𝑡 ), ℎ̃(𝑝𝑡 )

)}
;

Θ6 :=
{(
𝑝𝑡 , 𝑞𝑡

)
∈ [0, 1]2 : 𝑞𝑡 < 𝑝𝑡 and 𝑞𝑡 < ℎ̂(𝑝𝑡 )

}
.

Below, we describe the stable matching in each region.

Region 𝜇𝑎𝑎 𝜇𝑏𝑎 𝜇𝑏𝑏 𝜇𝑎𝑏

Θ1 𝑝 − (1 − 𝑞) (1 − ℎ𝑏) 1 − 𝑝 − (1 − 𝑞)ℎ𝑏 (1 − 𝑞)ℎ𝑏 (1 − 𝑞) (1 − ℎ𝑏)
Θ2 𝑝 − (1 − 𝑞) (1 − ℎ𝑏) 1 − 𝑝 − (1 − 𝑞)ℎ𝑏 (1 − 𝑞)ℎ𝑏 (1 − 𝑞) (1 − ℎ𝑏)
Θ3 𝑝ℎ𝑎 𝑞 − 𝑝ℎ𝑎 1 − 𝑞 − 𝑝 (1 − ℎ𝑎) 𝑝 (1 − ℎ𝑎)
Θ4 𝑞 − (1 − 𝑝) (1 − ℎ𝑏) (1 − 𝑝) (1 − ℎ𝑏) (1 − 𝑝)ℎ𝑏 1 − 𝑞 − (1 − 𝑝)ℎ𝑏
Θ5 𝑞 − (1 − 𝑝) (1 − ℎ𝑏) (1 − 𝑝) (1 − ℎ𝑏) (1 − 𝑝)ℎ𝑏 1 − 𝑞 − (1 − 𝑝)ℎ𝑏
Θ6 𝑞ℎ𝑎 𝑞(1 − ℎ𝑎) 1 − 𝑝 − 𝑞(1 − ℎ𝑎) 𝑝 − 𝑞ℎ𝑎

Note that, the stable matching is identical in regions Θ1 and Θ2, on the one hand, and Θ4 and Θ5, on

the other hand.

E.5 Proof of Proposition 8

Proof of Proposition 8. First, let us look at region Θ1 ∪ Θ2, in which 𝜇𝑡𝑎𝑎 = 𝑝𝑡 − (1 − 𝑞𝑡 ) (1 − ℎ𝑏) and
𝜇𝑡
𝑏𝑏

= (1 − 𝑞𝑡 )ℎ𝑏 . A steady state (𝑝, 𝑞) must satisfy:(
𝑝 − (1 − 𝑞) (1 − ℎ𝑏)

)
𝑑 (𝑝) (1 − 𝑝) − (1 − 𝑞)ℎ𝑏𝑑 (1 − 𝑝)𝑝 = 0;(

𝑝 − (1 − 𝑞) (1 − ℎ𝑏)
)
𝑑 (𝑞) (1 − 𝑞) − (1 − 𝑞)ℎ𝑏𝑑 (1 − 𝑞)𝑞 = 0.

Suppose 𝑞 > 𝑝 , then we have 𝑑 (𝑝) (1 − 𝑝) > 𝑑 (𝑞) (1 − 𝑞) and 𝑑 (1 − 𝑝)𝑝 < 𝑑 (1 − 𝑞)𝑞, making the two

equations impossible to hold at the same time. Hence, it must be the case that 𝑝 = 𝑞. Note that 𝑝 = 𝑞 = 1

is always a steady state.

Next, let us look at region Θ3, in which 𝜇𝑡𝑎𝑎 = 𝑝𝑡ℎ𝑎 and 𝜇𝑡
𝑏𝑏

= 1 − 𝑞𝑡 − 𝑝𝑡 (1 − ℎ𝑎). A steady (𝑝, 𝑞) must

satisfy:

𝑝ℎ𝑎𝑑 (𝑝) (1 − 𝑝) −
(
(1 − 𝑞 − 𝑝 (1 − ℎ𝑎)

)
𝑑 (1 − 𝑝)𝑝 = 0;

𝑝ℎ𝑎𝑑 (𝑞) (1 − 𝑞) −
(
(1 − 𝑞 − 𝑝 (1 − ℎ𝑎)

)
𝑑 (1 − 𝑞)𝑞 = 0.

Similarly, we can show that 𝑝 = 𝑞. Note that 𝑝 = 𝑞 = 1/2 and 𝑝 = 𝑞 = 0 are always steady states.

The analysis for region Θ4 ∪Θ5 is similar to that for region Θ1 ∪Θ2, and the analysis for region Θ6 is

similar to that for region Θ3.

Now, we examine the stability of 𝑝 = 𝑞 = 1/2. The Jacobian matrix near (1/2, 1/2) is continuous and
evaluated at (1/2, 1/2) is

J |𝑝=1/2,𝑞=1/2 =
[
1 + 1

2ℎ𝑎𝑑
′( 12 ) + ( 12 − ℎ𝑎)𝑑 ( 12 )

1
2𝑑 (

1
2 )

1
2𝑑 (

1
2 ) 1 + 1

2ℎ𝑎𝑑
′( 12 ) + ( 12 − ℎ𝑎)𝑑 ( 12 )

]
. (31)
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Note that the Jacobian Matrix is identical to the one for Proposition 7 in Section 5.2 by replacing ℎ𝑚

with ℎ𝑎 .

The two eigenvalues are 1−ℎ𝑎 (𝑑 (1/2) −𝑑 ′(1/2)/2) and 1−ℎ𝑎 (𝑑 (1/2) −𝑑 ′(1/2)/2) +𝑑 (1/2). Because
𝑑 ′ < 0, the first eigenvalue is less than 1. Assumption 2 guarantees that the first eigenvalue is larger

than −1 whatever the value of ℎ𝑎 . If the second eigenvalue is also less than 1 (it must be larger than −1
given Assumption 2), then (1/2, 1/2) is asymptotically stable; otherwise, it is a saddle point. The second

eigenvalue is less than 1 if

ℎ𝑎 >
𝑑 (1/2)

𝑑 (1/2) − 𝑑 ′(1/2)/2 ,

which is a modification of the specified condition stated in the proposition for (1/2, 1/2) to be stable.

Suppose type-𝑏 agents are all heterophilic: ℎ𝑏 = 0. In region Θ1∪Θ2 near (1, 1), the evolution satisfies

𝑝𝑡+1 − 𝑝𝑡 = (𝑝𝑡 + 𝑞𝑡 − 1)𝑑 (𝑝𝑡 ) (1 − 𝑝𝑡 ) > 0;

𝑞𝑡+1 − 𝑞𝑡 = (𝑝𝑡 + 𝑞𝑡 − 1)𝑑 (𝑞𝑡 ) (1 − 𝑞𝑡 ) > 0.

Similar conditions hold for region Θ4 ∪ Θ5. Hence, (1, 1) is an asymptotically stable steady state by the

contraction mapping theorem. □
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Online appendices: omitted details and proofs

OA.1: Quadratic socialization costs

Here we consider the case in which the probability of direct transmission within homogamies is linear:

𝑑 (𝑟 ) = 1− 𝑟 . As discussed in Appendix A, this would be the case in a standard cultural socialization model

á la Bisin and Verdier (2001) under the usual assumption of quadratic socialization costs: 𝑐 (𝜏𝑖𝑡 ) = (𝜏𝑖𝑡 )2/2.
Below, we characterize the stable steady states of the cultural dynamics in this case when ℎ𝑚𝑎 = ℎ𝑚𝑏 = ℎ𝑚

and ℎ𝑤𝑎 = ℎ𝑤𝑏 = ℎ𝑤 (Proposition 9) and when ℎ𝑚𝑎 = ℎ𝑤𝑎 = ℎ𝑎 and ℎ𝑚𝑏 = ℎ𝑤𝑏 = ℎ𝑏 (Proposition 10).

Proposition 9. Assume ℎ𝑚𝑎 = ℎ𝑚𝑏 = ℎ𝑚 ∈ (0, 1), ℎ𝑤𝑎 = ℎ𝑤𝑏 = ℎ𝑤 and men are proposers. If ℎ𝑤 = 1, (0, 0)
and (1, 1) are asymptotically stable steady states. If ℎ𝑤 < 1:

• If ℎ𝑚 ⩾ 1/2: (1/2, 1/2) is the unique asymptotically stable steady state.

• If ℎ𝑚 < 1/2: (1/2, 1/2) is unstable and (ℎ𝑚, ℎ𝑚) and (1−ℎ𝑚, 1−ℎ𝑚) are asymptotically stable steady

states.

Proof. We already know, form the proof of Proposition 7, that 𝑝∗ = 𝑞∗ must hold in steady state. Moreover,

a steady state (𝑟, 𝑟 ), with 𝑟 ⩽ 1/2 must be such that:

𝑟ℎ𝑚𝑑 (𝑟 ) (1 − 𝑟 ) = (1 − 𝑟 (2 − ℎ𝑚))𝑑 (1 − 𝑟 )𝑟 .

After simple algebra, this equation reduces to 𝑟 (ℎ𝑚 − 𝑟 ) (2𝑟 − 1) = 0 so that 0, 1/2 and ℎ𝑚 are solutions. In

the case 𝑟 > 1/2, a steady state (𝑟, 𝑟 ) must be such that:

[𝑟 − (1 − 𝑟 ) (1 − ℎ𝑚)] 𝑑 (𝑟 ) (1 − 𝑟 ) = (1 − 𝑟 )ℎ𝑚𝑑 (1 − 𝑟 )𝑟

After simple algebra, this equation reduces to (1− 𝑟 ) (1−ℎ𝑚 − 𝑟 ) (2𝑟 − 1) = 0 so that 1, 1/2 and 1−ℎ𝑚 are

solutions.

The Jacobian matrix evaluated at (ℎ𝑚, ℎ𝑚) and (1 − ℎ𝑚, 1 − ℎ𝑚) is

J |𝑝=1−ℎ𝑚𝑞=1−ℎ𝑚 = J |𝑝=ℎ𝑚𝑞=ℎ𝑚 =

[
1 − ℎ𝑚 (1 − ℎ𝑚) ℎ2𝑚

ℎ𝑚 (1 − ℎ𝑚) 1 − ℎ𝑚 (2 − 3ℎ𝑚)

]
. (A.1)

The two eigenvalues are 𝜆1 = 1 − 2ℎ𝑚 (1 − ℎ𝑚) ∈ (0, 1) and 𝜆2 = 1 − 2ℎ𝑚 (1/2 − ℎ𝑚) which is lower than

one when ℎ𝑚 < 1/2. Hence, in this case, both (ℎ𝑚, ℎ𝑚) and (1 − ℎ𝑚, 1 − ℎ𝑚) are stable.
The Jacobian matrix evaluated at (1/2, 1/2) is

J |𝑝=1/2𝑞=1/2 =
[
5/4 − ℎ𝑚 1/4

1/4 5/4 − ℎ𝑚

]
. (A.2)

The two eigenvalues are 𝜆1 = 1 − ℎ𝑚 ∈ (0, 1) and 𝜆2 = (3 − 2ℎ𝑚)/2 which is lower than one iff ℎ𝑚 ⩾ 1/2.
Hence, in this case, (1/2, 1/2) is stable, otherwise it is a saddle.
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Finally, the Jacobian matrix evaluated at (0, 0) and (1, 1) is

J |𝑝=0𝑞=0 = J |𝑝=1𝑞=1 =
[
1 + ℎ𝑚 0

ℎ𝑚 1

]
. (A.3)

The two eigenvalues are 𝜆1 = 1 and 𝜆2 = 1 + ℎ𝑚 . Hence, both (0, 0) and (1, 1) are unstable. □

Proposition 10. Assume ℎ𝑚𝑎 = ℎ𝑤𝑎 = ℎ𝑎 ∈ (0, 1), ℎ𝑚𝑏 = ℎ𝑤𝑏 = ℎ𝑏 ∈ (0, 1) and ℎ𝑎 ⩾ ℎ𝑏 . If ℎ𝑎 + ℎ𝑏 ⩾ 1,

(1/2, 1/2) is the unique asymptotically stable steady state. If ℎ𝑎 + ℎ𝑏 < 1, then,

• when ℎ𝑎 ⩾ 1/2 ⩾ ℎ𝑏 , (ℎ𝑎, ℎ𝑎) is unstable and (1/2, 1/2) and (1−ℎ𝑏, 1−ℎ𝑏) are asymptotically stable

steady states;

• when 1/2 > ℎ𝑎 ⩾ ℎ𝑏 , (1/2, 1/2) is unstable and (ℎ𝑎, ℎ𝑎) and (1 −ℎ𝑏, 1 −ℎ𝑏) are asymptotically stable

steady states.

Proof. We already know, from the proof of Proposition 8, that 𝑝∗ = 𝑞∗ must hold in steady state. Moreover,

a steady state (𝑟, 𝑟 ), with 𝑟 < �̂� := 1−ℎ𝑏
2−ℎ𝑎−ℎ𝑏 (̂𝑟 is calculated such that (�̂� , �̂� ) corresponds to the crossing point

between ℎ̃(𝑝𝑡 ) and ℎ̂(𝑝𝑡 )) must be such that

𝑟ℎ𝑎𝑑 (𝑟 ) (1 − 𝑟 ) = (1 − 𝑟 (2 − ℎ𝑎))𝑑 (1 − 𝑟 )𝑟 .

We already know that this equation has three solutions (0, 0), (1/2, 1/2) and (ℎ𝑎, ℎ𝑎) but (ℎ𝑎, ℎ𝑎) might

be a solution iff ℎ𝑎 ⩽ �̂� which is true iff ℎ𝑎 < 1 − ℎ𝑏 . Otherwise (ℎ𝑎 + ℎ𝑏 ⩾ 1) only (0, 0) and (1, 1) are
solutions.

In the case 𝑟 > �̂� , the steady state (𝑟, 𝑟 ) must be such that

[𝑟 − (1 − 𝑟 ) (1 − ℎ𝑏)] 𝑑 (𝑟 ) (1 − 𝑟 ) = (1 − 𝑟 )ℎ𝑏𝑑 (1 − 𝑟 )𝑟 .

We already know that this equation admits three solutions (1, 1), (1/2, 1/2) and (1−ℎ𝑏, 1−ℎ𝑏). However,
since �̂� ⩾ 1/2 (because ℎ𝑎 ⩾ ℎ𝑏 ), (1/2, 1/2) is not an admissible solution (if ℎ𝑎 = ℎ𝑏 , (1/2, 1/2) is an
admissible solution but it is confounded with (1 − ℎ𝑏, 1 − ℎ𝑏)). Moreover, (1 − ℎ𝑏, 1 − ℎ𝑏) might be a

solution if and only if 1 − ℎ𝑏 > �̂� wich is true iff ℎ𝑎 < 1 − ℎ𝑏 .

Tu sum-up, if ℎ𝑎 + ℎ𝑏 ⩾ 1, the dynamics admit three steady-states: (0, 0), (1/2, 1/2) and (1, 1); if
ℎ𝑎 + ℎ𝑏 < 1, the dynamics admit five steady-states: (0, 0), (1/2, 1/2), (1, 1), (ℎ𝑎, ℎ𝑎) and (1 − ℎ𝑏, 1 − ℎ𝑏).

Finally, we know, from the stability analysis of the different steady states in the proof of Proposition 9,

that (0, 0) and (1, 1) are unstable, (1/2, 1/2) is stable iff ℎ𝑎 ⩾ 1/2 otherwise it is a saddle, (ℎ𝑎, ℎ𝑎) is stable
iff ℎ𝑎 < 1/2 otherwise it is a saddle; (1 − ℎ𝑏, 1 − ℎ𝑏) is stable iff ℎ𝑏 < 1/2. □
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