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Abstract

The classic framework of Anscombe & Aumann (1963) for decision-making under
uncertainty postulates both a primary source of uncertainty and an auxiliary and
stochastically independent randomization device. It also imposes a specific timing
of resolution of uncertainty as the primary source resolves prior to the randomiza-
tion device. While this timing is without loss of generality for Subjective Expected
Utility, it forbids plausible choice patterns of ambiguity aversion. In this paper,
we reverse this timing by assuming that the randomization device resolves first and
obtain an axiomatic characterization of Choquet Expected Utility that is dual to
that of Schmeidler (1989). In this representation, ambiguity aversion is, somewhat
surprisingly, characterized by an aversion to randomizing unambiguous acts on am-
biguous events. Moreover, it is quantitatively more pronounced than in Schmeidler’s
model. Finally, our reversed timing yields the incentive compatibility of the random
incentive mechanisms frequently used in experiments for eliciting ambiguous beliefs.

Keywords: Ambiguity Aversion, Randomization, Timing of Resolution of Uncer-
tainty, Choquet Expectation, Slice-Comonotonicity.

JEL classification: D81.

1 Introduction

Ambiguity averse Decision-Makers only dispose of partial information to quantify the un-
certainty they face. As exemplified by the Ellsberg (1961) paradox, they express a prefer-
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ence for betting on events of known probability rather than on ones of unknown probabil-
ity. Since the seminal work of Schmeidler (1989), the framework of Anscombe & Aumann
(1963) has often been employed to model the notion of ambiguity aversion in a more formal
way. As a distinctive feature, this framework assumes a second source of uncertainty that
is infinitely rich and comes equipped with objective probabilities. This richness ensures
that each event from the first source has an equivalent in the second source. The objective
probabilities of such equivalents then help the Decision-Maker quantify the uncertainty
attached to the first source. Furthermore, the second source allows the Decision-Maker
to implement randomizations between actions depending on the first source. As noted
by Raiffa (1961), such randomizations are especially relevant in the context of ambiguity
aversion. Raiffa argued indeed that they help reduce the exposure to ambiguity.

Now, the Anscombe-Aumann (AA) framework1 also implicitly suggests a specific timing
for the resolution of uncertainty where the ambiguous source of uncertainty (i.e. the first
source) resolves prior to the randomization device (i.e. the second source). The starting
point of the present paper is the observation that these specific timing is sometimes too
restrictive to account for ambiguity aversion in a fully satisfactory way. To illustrate,
suppose that the ambiguous source of uncertainty consists of an urn containing red and
black balls in unknown proportions and that the randomization device takes the form of a
fair coin. Next, consider the following four bets:

f R B

H $10 $10
T $0 $0

g R B

H $0 $0
T $10 $10

h R B

H $10 $0
T $10 $0

k R B

H $0 $10
T $0 $10

The payoffs induced by each of f and g only depend on the outcome of the randomization
device. These two acts can hence be thought of as unambiguous. Meanwhile, h and k
induce payoffs only depending on the outcome of the ambiguous source, and can this time
be thought of as ambiguous. Symmetry reasons make us assume that f and g are indifferent
to each other, and likewise for h and k. In this context, ambiguity aversion typically means
a preference for each of f and g over each of h and k. Consider now the following bets:

l R B

H $10 $0
T $0 $10

l′ R B

H $10 $1
T $0 $9

In the AA framework, actions are modeled as functions from the ambiguous state space
to the set of probability distributions on the outcomes; these will be referred to as AA
acts. If R obtains, each of f , g and l induces a 50:50 chance of obtaining $10 or $0. If
B obtains, each of them induces again the same probability distribution. All three of
f , g and l are then represented by the same AA act. As it fails to distinguish between

1What this paper calls the AA framework is the account that Fishburn (1970) and Schmeidler (1989)
provide rather than the original framework of Anscombe & Aumann (1963). See Section 6 below.
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these three acts, the AA framework forces their indifference. In terms of beliefs, it means
that the “diagonal” event {(H,R), (T,B)} must necessarily be perceived as likely as H
or T and therefore as unambiguous (specifically of probability 1/2). In fact, under classic
assumptions, this conclusion extends to situations involving distinct AA acts. For instance,
consider f and l′ and suppose that the Decision-Maker is risk neutral and in particular
indifferent between having a 50:50 chance of obtaining $10 or $0 and having a 50:50 chance
of obtaining $9 or $1. This time, the AA framework does see the difference between the
two acts as f and l′ induce different distributions on the outcomes at each of R and B.
Yet, all these distributions being indifferent, the standard AA Monotonicity axiom, which
applies the logic of statewise dominance with respect to the ambiguous source, forces f
and l′ to be indifferent. In other words, l′ must essentially be perceived as unambiguous.

In this paper, we challenge such conclusions that diagonal acts like l or l′, or diagonal
events like {(H,R), (T,B)}, are perceived as unambiguous. In this respect, what appears
to us to be inappropriate in the AA framework is the statewise logic, as applied to the
ambiguous source of uncertainty, that is inherent to both the definition of AA acts and the
AA Monotonicity axiom. This statewise logic certainly makes sense if it is assumed that
the ambiguous source resolves prior to the randomization device. In this case, one may
reasonably expect agents to ask themselves how well they would feel at each state in the
ambiguous source and apply the corresponding monotonicity condition. But, in our view,
this implicit timing of resolution of uncertainty proves in the first place to be too restrictive
for ambiguity aversion. Indeed, suppose now that the timing of resolution of uncertainty
is reversed so that the randomization device resolves first. Then, at each of H or T , all
three of h, k and l yield $10 or $0 with the same, yet unknown, probabilities. Monotoncity
with respect to the randomization device leads to the conclusion that all three of h, k and
l must be pairwise indifferent. Hence, l now appears to be just as ambiguous as h or k.
Alternatively, the diagonal event must be perceived as just as ambiguous as events R or B.
Finally, simply reversing the timing of resolution yields ambiguity averse choice patterns
that are impossible to obtain under the “direct” timing of AA.

To intuitively understand why the timing of resolution of uncertainty interferes with the
modeling of ambiguity aversion, note as a preliminary remark that the randomization
device is supposed in the first place to allow the agent to randomize ambiguous acts and
is modeled with a second state space. It is then also possible for the agent to randomize
unambiguous act on events from the ambiguous source of uncertainty. Therefore, ambiguity
aversion might in general reveal itself through at least one of the following two choice
patterns:

(1) a preference for randomizing two indifferent ambiguous acts on unambiguous events,

(2) an aversion to randomizing two indifferent unambiguous acts on ambiguous events.

Choice Pattern (1) has often been taken to be the defining feature of ambiguity aversion.
For instance, see Schmeidler (1989) or Gilboa & Schmeidler (1989). Indeed, the use of an
unambiguous event in the randomization between two indifferent ambiguous acts reduces
the exposure to ambiguity. It is then natural to expect an ambiguity averse Decision-Maker
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to have a preference for the resulting randomization. Meanwhile, Choice Pattern (2) ap-
pears to be just as plausible as Choice Pattern (1). This time, the use of an ambiguous
event in the randomization between two indifferent unambiguous acts increases the ex-
posure to ambiguity. Ambiguity averse Decision-Makers can be expected to disprefer the
resulting randomization. In the example, l can be seen as the randomization between h and
k on H and T , and Choice Pattern (1) would support a preference for l over each of h and
k. Meanwhile, l can also be seen as the randomization between f and g on R and B, and
Choice Pattern (2) would support this time a preference for each of f and g over l. Now,
the AA direct timing of resolution of uncertainty and their notion of monotonicity make a
blind commitment to Choice Pattern (1) and fail to acknowledge the relevance of Choice
Pattern (2). The resulting randomization in Choice Pattern (2) is indeed by construction
indifferent to each of the initial acts at each state of the ambiguous source and, therefore,
by AA monotonicity, indifferent to each of them. However, the experimental literature
which we selectively review Section 6 provides some support to Choice Pattern (2).

In this context, the objective of this paper is to build an axiomatic theory of ambiguity
aversion that acknowledges the role of Choice Pattern (2) and, in particular, accommodates
the ambiguous nature of l in the example. We achieve this by adopting the reversed
timing of resolution of uncertainty according to which the randomization device resolves
prior to the ambiguous source. To do so, we replace the AA assumption of exogenous
probabilities with a state-space description of the randomization device and obtain a theory
of ambiguity that is entirely dual to that of Schmeidler (1989): our Decision-Maker is
characterized by a capacity on the ambiguous source and a (subjective) probability on the
randomization device. What differs from Schmeidler (1989) is only the order of integration
in the evaluation of acts. Moreover, and as expected, ambiguity aversion turns out to be
equivalent to Choice Pattern (2), in a sense we later explain.

Broadly speaking, which timing is appropriate ultimately depends on the economic ap-
plication that one has in mind. Both are equally plausible, and it is difficult to think of
general arguments in favor of either one. Note also that many decision problems or exper-
imental setups of interest involving multiple sources of uncertainty simply do not provide
the information as to which timing is the correct one. In this case, the choice of a timing
becomes a purely subjective matter, which makes again the two equally plausible. How-
ever, there are arguably methodological reasons to favor the reversed timing when it comes
specifically to building a theory of ambiguity aversion. First, our introductory example
already suggests that the AA timing imposes unjustified bounds on ambiguity aversion.
Our general results confirm this by showing that the reversed timing amplifies ambiguity
aversion and leads, for instance, to larger no-trades intervals à la Dow & Werlang (1992).
Intuitively, this is because our agent meets ambiguity multiple times (specifically at each
of the possible states of the randomization device) while the agent of Schmeidler’s agent
only meets ambiguity once prior to the resolution of the randomization device. Second, the
issue of the timing of resolution of uncertainty is currently receiving increasing attention in
the experimental literature. Indeed, early arguments due to Oechssler & Roomets (2014),
Bade (2015) and Kuzmics (2017) call the relevance of random incentive mechanisms for
the elicitation of ambiguous beliefs into question. In such mechanisms, a subject is given
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the opportunity to make a decision in each of several decision problems but is only ef-
fectively paid according to one of his decisions determined at random by appealing to a
randomization device. These authors worry about the possibility that subjects use the
randomization device to construct hedges to reduce their exposure to ambiguity and hence
fail to report their true ambiguity-averse preferences. But the plausibility of the argument
crucially depends on the timing of resolution of uncertainty. As we will see in greater
detail, random incentive mechanisms are always compatible with our notion of ambiguity
aversion under the reversed timing of resolution of uncertainty.

The remainder of the paper is organized as follows: Section 2 presents the framework
and notation we use all along. Section 3 introduces the Expected Choquet Utility (ECU)
representation of preferences, which is how we dub our dual version of the Schmeidler
(1989) Choquet Expected Utility (CEU) representation. In this section, we compare in
detail ECU to CEU but also to the dual model of Bommier (2017). Sections 4 and 5
respectively provide axiomatic characterizations for the ECU representation and various
forms of ambiguity aversion within the model. Finally, Section 6 discusses our modeling
approach and the related literature. All proofs are gathered in the Appendix.

2 Framework and notation

Consider a state space S1 representing a source of uncertainty that the Decision-Maker
(DM) may perceive as ambiguous. Consider also a second state space S2 representing the
uncertainty attached to some randomization device. We suppose that S2 is unambiguous.
Yet we do not take the probability on S2 as exogenously given and will rather elicit it from
preference. Consider finally a set X of consequences.

Let S denote the Cartesian product of S1 and S2 and B denote the Boolean algebra
generated by the rectangles E1 × E2 for E1 ⊆ S1 and E2 ⊆ S2. An act is a finitely-valued
B-measurable function from S to X . Let F denote the set of all acts. More explicitly, a
function f from S to X lies in F if there exist two finite partitions Π1 and Π2 of S1 and S2
respectively such that f is constant on E1×E2 for all E1 ∈ Π1 and E2 ∈ Π2. Equivalently,
a finitely-valued function f from S to X is an act if f−1({x}) is a finite disjoint union
of rectangles for all x ∈ X . The DM is endowed with a binary relation % applying to F
representing his preferences on acts.

Our domain F is the natural adaptation of the domain that Schmeidler (1989) uses in his
account of the AA theorem to our setup where the two sources of uncertainty are described
in terms of state spaces. Yet this domain may appear to be excessively restricted as, for
instance, it typically does not contain the indicator function of a circle. In fact, in our main
result, it would be possible to accommodate arbitrary functions from S to X at the cost of
stronger axioms like adequate versions of Savage’s (1954) P7. In contrast, the restriction
by B-measurability plays a crucial role in our other results because of its importance for
Fubini-type results for finitely additive probabilities or capacities. See Ghirardato (1997)
and Marinacci (1997).
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For i = 1, 2, let Fi denote the set of all finitely-valued functions from Si to X . Let πi
denote the projection of S on Si defined by πi(s) = si for all s ∈ S. We define a binary
relation %i on Fi by setting, for all fi, gi ∈ Fi,

fi %i gi ⇐⇒ fi ◦ πi % gi ◦ πi.

Hence, %i represents the marginal preferences of the DM relative to the single source Si of
uncertainty.

Following the usual abuse of notation, we will identify every outcome x ∈ X with the acts
in F , F1 and F2 constantly equal to x. Likewise, for i = 1, 2, we will identify each fi ∈ Fi
with the act fi ◦ πi ∈ F and hence treat F1 and F2 as subsets of F . We will also identify
each Ei ⊆ Si with the subset Ei × S−i ∈ B and hence treat S1 and S2 as elements of B.

Considering any two acts f, g ∈ F and event E ∈ B, fEg denotes the element of F which
is equal to f on E and equal to g on S \E. For instance, and by the previous paragraph,
for f1, g1 ∈ F1 and E2 ⊆ S2, f1E2

g1 represents the more cumbersome f1 ◦ π1S1×E2
g1 ◦ π1.

A binary relation %` on B is defined in the usual way: For all E,F ∈ B,

E %` F ⇐⇒ (there exist x, y ∈ X such that x � y and xEy % xFy).

A ranking E %` F means that the DM considers event E to be at least as likely as event
F , and the relation %` is referred to as the DM’s comparative likelihood ranking of events.

3 Expected Choquet Utility

We now present the Expected Choquet Utility representation of preferences that the next
section characterizes axiomatically. Special emphasis is put on the connections to the
Schmeidler (1989) model of Choquet Expected Utility (CEU) preferences and the Bommier
(2017) dual approach to CEU. We start with preliminary definitions.

Consider a set E endowed with a Boolean algebra BE of subsets. A probability measure on
(E ,BE) is a function P from BE to [0, 1] such that P (E) = 1 and P (E∪F ) = P2(E)+P2(F )
for all E,F ∈ BE such that E ∩ F = ∅. Moreover, a probability measure P on (E ,BE) is
said to be convex-ranged if for all E ∈ BE satisfying P (E) > 0 and all α ∈ (0, P (E)), there
exists F ⊆ E such that P (F ) = α.

A capacity on (E ,BE) is a function v from BE to [0, 1] such that v(E) = 1, v(∅) = 0, and
v(E) ≥ v(F ) for all E,F ∈ BE such that F ⊆ E. If v is a capacity on (E ,BE) and ζ is a
bounded function from E to R such that {ζ ≥ t} ∈ BE for all t ∈ R, the Choquet integral
of ζ with respect to v is defined in the following way:∫

E
ζ(s) dv(s) =

∫ 0

−∞
[v(ζ ≥ t)− 1] dt +

∫ +∞

0

v(ζ ≥ t) dt.

Moreover, we say that a capacity (or a probability) is defined on E instead of (E ,BE) when
BE = 2E .
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Suppose v1 is a capacity on S1, P2 is a probability measure on S2, and u is a function
from X to R. Then, we say that (v1, P2, u) provides an Expected Choquet Utility (ECU)
representation of % if, for all f, g ∈ F ,

f % g ⇐⇒
∫
S2

∫
S1
u ◦ f(s1, s2) dv1(s1)dP2(s2) ≥

∫
S2

∫
S1
u ◦ g(s1, s2) dv1(s1)dP2(s2).

The DM portrayed in an ECU representation faces a source of uncertainty that is repre-
sented by S1 and that he may perceive as ambiguous. He also disposes of a randomization
device that is represented by S2 and that may be used for randomizing the ambiguous
acts defined over S1. Furthermore, he considers that the randomization device resolves
prior to the ambiguous source of uncertainty. For instance, this may be because he has
the information that the randomization device truly resolves first or because he simply
happens to believe that it does so. Another possibility is that he uses this timing, not
for its descriptive accuracy, but rather in a more pragmatic way, because it allows greater
levels of ambiguity aversion than those permitted by the assumption that the ambiguous
source resolves first, as explained in greater detail in the next section. In any case, the DM
uses this specific timing directly in the evaluation of acts as depicted in the ECU repre-
sentation, and more specifically in the fact that the outer integral is on S2, while the inner
integral is on S1. This suggests indeed that he analyses each act f ∈ F by asking himself
how well he would feel when choosing f and observing each of the possible state of the
randomization device S2 and then aggregating on S2, which only makes sense under the
assumption of this specific timing. The outer integral is a Lebesgue integral with respect
to an endogenously determined probability measure P2, which reveals the unambiguous
nature of the randomization device, while the inner integral is with respect to a (possibly
non-additive) capacity v1, which allows the possibility of sensitivity to ambiguity on S1.

For expositional convenience, we define the ECU functional in the following way: for all
f ∈ F ,

ECU(f) :=

∫
S2

∫
S1
u ◦ f(s1, s2) dv1(s1)dP2(s2).

This representation turns out to be a particular case of that of Sarin & Wakker (1992).
When adequately reformulated in our more specific setup, their theorem provides a repre-
sentation where the DM has beliefs in the form of a capacity v on S = S1 × S2 with an
additive S2-marginal and evaluates acts by the Choquet integral on S with respect to v.
Now, as shown in the proof of Proposition 1 in Appendix B, for all f ∈ F , we have

ECU(f) =

∫
S
u ◦ f(s) dv(s),

where v denotes the capacity on (S,B) defined, for all E ∈ B, by

v(E) =

∫
S2

∫
S1
1E(s1, s2) dv1(s1)dP2(s2).
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The simple possibility of reformulating the ECU representation in this way suggests the
following: it is equivalent to consider that the DM uses the assumption that the unambigu-
ous source of uncertainty resolves first, not directly in the evaluation of acts as explained in
the previous paragraph, but rather in the evaluation of the likelihood of events as depicted
in v, and then applies the logic of Choquet integration with respect to v. As we will see,
that the two approaches yield the same evaluations is remarkable and far from obvious.

The ECU representation is dual to the CEU representation of Schmeidler (1989) in a
relatively straightforward way. Indeed, though Schmeidler uses the AA framework, his
decision criterion can be reformulated in our setup as the maximization of

CEU(f) :=

∫
S1

∫
S2
u ◦ f(s1, s2) dP2(s2)dv1(s1).

See Grabisch et al. (2022) for an axiomatization of this criterion in our current setup.
It is hence clear that the major difference between the Schmeidler (1989) model and our
approach lies in the timing of resolution of uncertainty. While he assumes that the ran-
domization device S2 resolves after the ambiguous source S1, we consider that it does
before.

In a rather surprising way, our approach also turns to be dual to that of Bommier (2017),
which is already supposed itself to be dual to that of Schmeidler. To clarify, note first that
the Schmeidler (1989) criterion can be reformulated for an act f ∈ F such that u ◦ f has
values in the closed interval I ⊆ R in the following way:

CEU(f) =

∫
S1

∫
I

P2(u ◦ f(s1, ·) ≥ t)dtdv1(s1) + min(I).

Bommier uses the AA framework and obtains a wide class of models that are dual to
AA monotonic models. His Choquet model is only a particular case. When adequately
reformulated in our setup, Bommier’s Choquet case simply consists in changing the order
of integration in the previous formula and leads to the following criterion:

CEU(f) :=

∫
I

∫
S1
P2(u ◦ f(s1, ·) ≥ t)dv1(s1)dt + min(I).

As it turns out, Bommier’s approach is also a particular case of Sarin & Wakker (1992).
Indeed, as shown in the proof of Proposition 1 in Appendix B, for every f ∈ F , we have,

CEU(f) =

∫
S
u ◦ f(s) dv(s),

where v denotes the capacity on (S,B) defined, for all E ∈ B, by

v(E) =

∫
S1

∫
S2
1E(s1, s2) dP2(s2)dv1(s1).

This reformulation reveals a major difference between Schmeidler’s and Bommier’s ap-
proaches. The two use the same timing of resolution of uncertainty, namely that one
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according to which the ambiguous source resolves first. But Schmeidler’s DM uses this
timing directly in the evaluation of acts, while Bommier’s one uses it in the evaluation
of the likelihood of events and applies then the logic of Choquet integration. As already
proven by an example of Sarin & Wakker (1992) and made more systematic by Bommier
(2017), the two approaches do not coincide. The difference contrasts with what happens
under our reversed timing of resolution of uncertainty, where the two approaches agree
with each other. This asymmetry is finally key in understanding why ECU is dual to each
of CEU and CEU . First, ECU and CEU are dual to each other in that they rely on the
two different timings of resolution of uncertainty specifically in the evaluation of acts. But
ECU and CEU are also dual to each other in that they rely on the two different timings
specifically in the evaluation of the likelihood of events. (See also the proof of Proposition
5 in Appendix B for alternative formulations of CEU , CEU and ECU , which make the
three criteria directly and globally comparable).

Now, key differences between the three functionals ECU , CEU and CEU can be illustrated
within our introductory example. Fix α ∈ (0, 1/2) and suppose v1(R) = v1(B) = α and
P2(H) = P2(T ) = 1/2. Suppose also u = Id. Then, the ECU representation imposes the
following preference ranking:

f ∼ g � l ∼ h ∼ k.

More specifically, the utility value of each of f and g is given by 5, while the utility value of
each of h, k and l is given by 10α. Hence, as expected, our representation essentially makes
l an ambiguous act. This contrasts with the predictions of each of CEU and CEU , which
both suppose that acts in F inducing the same AA act must be indifferent and hence lead
to the following preference pattern:

f ∼ g ∼ l � h ∼ k.

This time, for both CEU and CEU , the utility value of f , g and l is equal to 5, while that
of h and k is still given by 10α. In other words, l becomes an unambiguous act.

The next proposition provides a more systematic analysis of these cases where the differ-
ent functionals ECU , CEU and CEU agree with each other. It relies on the following
definitions. For i ∈ {1, 2}, we say that two acts fi, gi ∈ Fi are comonotonic if there are no
si, s

′
i ∈ Si such that fi(si) � fi(s

′
i) and gi(s

′
i) � gi(si). This notion is used by Schmeidler

(1989) to obtain his axiomatic characterization of CEU . Intuitively, two comonotonic acts
vary in the same direction and hence they cannot provide hedges for each the other. An
act f ∈ F is said to have comonotonic Si-sections if f(si, ·) and f(s′i, ·) are comonotonic
for all si, s

′
i ∈ Si. Ghirardato (1997) uses these notions to obtain Fubini-type results for

Choquet integrals, which is key for the following result. In fact, there is a different but
equivalent way to define the property of comonotonic S1-sections that we may use. For
all f2, g2 ∈ F2, we write f2 4 g2 if, for all x ∈ X , we have {f2 %2 x} ⊇ {g2 %2 x} or
{f2 %2 x} ⊆ {g2 %2 x}; equivalently, the preference upper sets of f2 and g2 form a chain.
Then, an act f ∈ F has comonotonic S1-sections if and only if 4 is a complete binary
relation on the S1-sections of f . This reformulation turns out to be directly comparable to
the property of stochastically ordered S1-sections that we introduce next. For f2, g2 ∈ F2,
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we say that f2 stochastically dominates g2, and write f2 � g2, if {g2 %2 x} %` {f2 %2 x} for
all x ∈ X . Now, for f ∈ F , we say that f has stochastically ordered S1-sections if the binary
relation � is complete and hence a weak order on the S1-sections of f . We now have all
the ingredients we need to formally identify our special cases of agreement between the
three representations CEU , CEU and ECU .

Proposition 1 The following statements hold for all f ∈ F :

• If f has comonotonic Si-sections for some i ∈ {1, 2}, then ECU(f) = CEU(f),

• If f has comonotonic S2-sections, then ECU(f) = CEU(f),

• If f has stochastically ordered S1-sections, then CEU(f) = CEU(f).

All three of the assumptions of comonotonic S1-sections, comonotonic S2-sections and
stochastically ordered S1-sections capture the intuition that the sections of the act provide
no hedge on either S1 or S2, though they do so in different formal ways. Their negations
reveal the presence of different forms of hedges. Broadly speaking, Proposition 1 then
shows that disagreements between the evaluations of an act reveal the presence of hedges
among its sections. Those hedges obtained by negating the comonotonicity of sections
are referred to as (statewise) hedges and those ones obtained by negating the stochastic
orderedness as stochastic hedges.

Proposition 1 can be illustrated in a large extent within the following refinement of the
introductory example. Consider the acts defined as follows:

f ′ R B

H $10 $9
T $0 $1

l′ R B

H $10 $1
T $0 $9

h′ R B

H $10 $1
T $9 $0

f ′′ R B

H $10 $9
T $1 $0

l′′ R B

H $10 $0
T $1 $9

h′′ R B

H $10 $0
T $9 $1

In the analysis of this example, we suppose that α < 1/2. This value makes the capacity
on {R,B} convex, a feature commonly associated to ambiguity aversion since Schmeidler
(1989). The evaluations of the various acts relatively to CEU , CEU and ECU are as
follows:

5 α + 9/2 9α + 1/2

CEU f ′, l′ f ′′, l′′ h′, h′′

CEU f ′, f ′′, l′, l′′ h′, h′′

ECU f ′, f ′′ l′, l′′, h′, h′′
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Here, f ′, f ′′ and h′ have comonotonic S1-sections whereas f ′′, h′ and h′′ have comonotonic
S2-sections and f ′′, l′′ , h′ and h′′ have stochastically ordered S1-sections.

The first item of Proposition 1 shows that CEU and ECU only differ in their treatment
of acts whose S1-sections and S2-sections both provide a hedge. Such acts are typically
obtained by starting from other acts with either comonotonic S1-sections or comonotonic
S1-sections and then applying permutations within rows or within columns. By the first
item of the proposition, CEU and ECU agree in their evaluation of these initial acts, but
they react very differently to permutations within rows or within columns. Indeed, ECU
does not react to a permutation within row while CEU does not react to a permutation
within column (which leaves the induced AA act unchanged). For instance, CEU and
ECU agree in their evaluation of f ′. Moreover, l′ provides a double hedge and is obtained
from f ′ through a permutation within column. As expected, CEU is indifferent to the
permutation, but ECU reacts negatively. This is because the permutation results in a
hedge discounting the high gains that were resulting for sure on H with f ′. For another
example, CEU and ECU agree in their evaluation of h′′. In addition, l′′ provides a double
hedge and is obtained from h′′ through a permutation within row. This time, ECU is
indifferent to the permutation, but CEU reacts positively. This is because the permutation
results in a hedge on S1 that reduces the exposure to ambiguity.

The second item of the proposition shows that any disagreement in the utility values of
CEU and ECU reveals the presence of a hedge among the S2-sections. Such acts are
typically obtained by starting from other acts with comonotonic S2-sections and applying
a permutation within row. By the second item of the proposition, CEU and ECU agree
in their evaluation of these initial acts, but they react very differently to permutations
within row. Indeed, ECU does not react as already explained above, but CEU may react
negatively. Indeed, consider f ′′ which is obtained from f ′ through such a permutation.
The latter cancels the perfect hedge on S1 initially present in f ′ and hence increases the
exposure to ambiguity.

The third item of the proposition shows that any disagreement in the utility values of
CEU and CEU is due to a stochastic hedge on S1. Such a hedge is typically lost through
a mean preserving contraction within column. For instance, f features such a hedge while
f ′ does not and is obtained from f through a mean preserving contraction within the
second column. Now, CEU does not react to the contraction while CEU reacts negatively
to the loss of a stochastic hedge on S1 that it implies.

Finally, and incidentally, observe that, since α < 1/2, the columns of the table above are
ordered by decreasing order. As we move from CEU to CEU and then ECU , acts are
“pushed” to the right hand side and assigned lower and lower utility values. This seems
to suggest that ECU (resp. CEU) is more ambiguity averse than CEU (resp. CEU).
Section 5 clarifies the intuition.
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4 Axiomatic characterization

This section provides axiomatic foundations to the ECU representation. Our first axiom
is a standard condition for a numerical representation to exist. A binary relation % is said
to be complete if f % g or g % f for all f, g ∈ F and transitive if, for all f, g, h ∈ F , f % g
and g % h implies f % h.

(A1 - Weak Order) % is complete and transitive.

The Sure-Thing Principle is one of Savage’s most controversial axiom as it imposes a form
of additivity of beliefs that is incompatible with the Ellsberg choices and hence precludes
sensitivity to ambiguity. In order to allow for ambiguity to play a role in the decision
process, our next axiom only applies Savage’s Sure-Thing Principle on events from the
unambiguous source S2 of uncertainty representing the randomization device.

(A2 - Sure-Thing Principle) For all f, g, h, k ∈ F and E2 ⊆ S2, fE2h % gE2h if and
only if fE2k % gE2k.

Interestingly, A2 is much stronger than the form of the Sure-Thing Principle needed to
axiomatize CEU in our current setup. See, for instance, Axiom A2 of Grabisch et al.
(2022). Our A2 applies indeed to all acts in F while the axiom of Grabisch et al. only
applies to acts in F2. This allows us to obtain, by standard arguments, a collection {%E2 ,
E2 ⊆ S2} of binary relations on F satisfying the following conditions:

(Consequentialism) For all f, g ∈ F and E2 ⊆ S2, if f = g on S1 × E2, then, f ∼E2 g,

(Dynamic Consistency) For all f, g ∈ F and all finite partition Π2 of S2, if f %E2 g for all
E2 ∈ Π2, then f % g.

The next axiom has two fairly standard parts comparable in spirit to Savage’s P3. We
introduce it by providing first the adequate formulation of the classic AA Monotonicity
axiom in our framework, which requires the following: For all f, g ∈ F , if f(s1, ·) %2

g(s1, ·) for all s1 ∈ S1, then f % g. Hence, the next axiom is composed of two parts
corresponding to two asymmetric versions of such monotonicity: A3(i) is a dual version
of AA Monotonicity that applies with respect to the randomization device instead of the
ambiguous source of uncertainty while A3(ii) is a version of AA Monotonicity restricted to
acts depending only on the ambiguous source S1.
(A3 - Monotonicity)

(i) For all f, g ∈ F , if f(·, s2) %1 g(·, s2) for all s2 ∈ S2, then f % g.

(ii) For all f1, g1 ∈ F1, if f1(s1) % g1(s1) for all s1 ∈ S1, then f1 %1 g1.

It is known in the literature that imposing simultaneously the classic AA Monotonicity
axiom and its dual version A3(i) precludes sensitivity to ambiguity. For instance, see
Ceron & Vergopoulos (2021), Grabisch et al. (2022) or Proposition 6 below. This explains
why we need to weaken the conjunction of the two. Now, by sticking to A3(i), we maintain
the full dual version of AA Monotonicity, which is of critical importance to our whole
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approach. As suggested by the introduction, this is a key feature of our dual approach
to ambiguity. Indeed, A3(i) presupposes the specific timing of resolution of uncertainty
according to which the randomization device resolves prior to the ambiguous source.

Moreover, A3(i) implies the following form of stochastic independence between the two
sources of uncertainty that invokes the conditional preferences implied by A2 as explained
above:

(Stochastic Independence) For f1, g1 ∈ F1 and all E2 ⊆ S2, if f1 %1 g1, then f1 %E2 g1.

In words, observing an event in the randomization device does not change the preference
relative to acts depending only on the ambiguous source of uncertainty. In contrast, the
characterization of CEU due to Grabisch et al. (2022) uses the dual version of Stochastic
Independence. See their Proposition 4. In particular, consider E1, F1 ⊆ S1 and E2 ⊆ S2.
Then, A3(i) implies:

E1 %` F1 =⇒ E1 × E2 %` F1 × E2.

The intuition is similar: observing an event in S2 does not affect the DM’s ex ante com-
parative likelihood ranking on events from S1. Note also that A3(i) implies the following
form of indifference to indifferent ambiguous acts in F1 on unambiguous events in S2: For
all f1, g1 ∈ F1 and E2 ⊆ S2 such that f1 ∼1 g1, we have f1E2

g1 ∼ f1 ∼1 g1. In the language
of Section 1, this means that A3(i) dismisses the relevance of Choice Pattern (1).

The next axiom is a version of Savage’s axiom P4 of Comparative Probability. Specifically,
it is weaker than Savage’s P4 in that it only applies to the unambiguous events in S2.
However, it is also stronger in that the prizes obtained on these unambiguous events in S2
are not forced to be constant acts, but allowed to be arbitrary ambiguous acts in F1.

(A4 - Comparative Probability) For all f ∗1 , f1, g
∗
1, g1 ∈ F1 such that f ∗1 �1 f1 and

g∗1 �1 g1 and all E2, F2 ⊆ S2, f ∗1E2
f1 % f ∗1 F2

f1 if and only if g∗1E2
g1 % g∗1F2

g1.

Allowing for arbitrary prizes in F1 in this axiom provides the following characterization of
the comparative likelihood ranking for events in S2: For all E2, F2 ⊆ S2,

E2 %` F2 ⇔ (there exist f ∗1 , f1 ∈ F1 such that f ∗1 �1 f1 and f1
∗
E2
f1 % f1

∗
F2
f1).

This turns out in particular to imply a form of stochastic independence dual to that already
implied by A3(i). Indeed, one can prove that for all E1 ⊆ S1 and E2, F2 ⊆ S2, A4 implies
(up to the previous axioms) the following property:

E2 %` F2 =⇒ E1 × E2 %` E1 × F2.

In words, observing E1 in S1 does not affect the DM’s ex ante beliefs on events from S2.
Hence, even though imposing AA Monotonicity and its dual form A3(i) proves to be too
restrictive for sensitivity to ambiguity at the level of preferences on acts, the conjunction
of A3(i) and A4 provides a symmetric treatment of stochastic independence when it comes
more specifically to the comparative likelihood ranking.

Our A4 is similar in spirit to Ergin and Gul’s (2009) Axiom 5b which is key for their
notion of second-order probabilistic sophistication. They too have preferences on acts
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defined on a product state space Ωa × Ωb. Their Axiom 5b adapts, not Savage’s P4 itself,
but rather Machina and Schmeidler’s (1992) stronger version P4*. It does so by restricting
P4* to events in Ωb and allowing arbitrary acts on Ωa instead of constant acts. Hence,
our A4 may appear to be to Savage’s P4 exactly what their Axiom 5b is to Machina and
Schmeidler’s P4*. However, there is also a subtle difference. Indeed, in Ergin and Gul’s
second-order probabilistic sophistication, Ωa plays the role of the randomization device and
Ωb plays the role of what we call here the ambiguous source of uncertainty. (This is for
instance confirmed by the fact that their induced AA acts are defined on Ωb.) Hence, in our
terminology, Ergin and Gul’s Axiom 5b restricts P4* to events from the ambiguous source
of uncertainty while A4 restricts P4 to events from the randomization device. Likewise,
Axiom 5b extends P4* to acts depending on the randomization device while A4 extends
P4 to acts depending on the ambiguous source of uncertainty. In this respect, Axiom 5b
and A4 appear to implement logics that are dual to each other.

Our fifth axiom corresponds to the usual requirement of non-triviality.

(A5 - Non-triviality) There exist x, y ∈ X such that x � y.

Our next axiom is a version of Savage’s axiom P6 of Small Event Continuity. Savage’s
axiom essentially requires the state space to be infinitely rich: there must exist arbitrarily
fine partitions of the state space. In the AA framework too, such a requirement is implicit
in the assumption that all probability distributions of outcomes are feasible. Contrary to
AA, we model explicitly the randomization device and hence need to invoke explicitly A6
to obtain the inifinite richness of the randomization device in the previous sense. This will
allow us in exchange, as in AA, to accommodate arbitrary (finite or infinite) ambiguous
sources of uncertainty.

(A6 - Small Event Continuity) For all f, g, h ∈ F such that f � g, there exists a finite
partition Π2 of S2 such that f � hE2g and hE2f � g for all E2 ∈ Π2.

Our final axiom is a weak version of Sarin and Wakker’s (1992) Cumulative Dominance.
For i = 1, 2, fi ∈ Fi and x ∈ X , let {fi %i x} denote the subset {si ∈ Si, fi(si) %i x} of
Si. This event collects all states where fi yields an outcome at least as good as x and is
referred to as the cumulative event of fi at x. Consider two acts, the one defined on S1 and
hence ambiguous, and the other one defined on S2 and hence unambiguous. Suppose that
the DM believes that the two acts have indifferent cumulative events at every outcome.
Then, A7 requires the two acts to be indifferent to each other. Put differently, the specific
source of uncertainty used in the construction of a cumulative distribution of outcomes by
some act is irrelevant for the evaluation of that act.

(A7 - Source Independence) For all f1 ∈ F1 and f2 ∈ F2, if {f1 %1 x} ∼` {f2 %2 x}
for all x ∈ X , then f1 ∼ f2.

We now come to our main result:

Theorem 2 A binary relation % on F satisfies Axioms A1-A7 if and only if there exist a
capacity v1 on S1, a convex-ranged probability measure P2 on S2, and a non-constant func-
tion u from X to R such that (v1, P2, u) provides an ECU representation of %. Moreover,
v1 and P2 are unique, and u is unique up to positive affine transformation.
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We briefly sketch the proof of Theorem 2, which helps better identify the similarities
and differences to Sarin & Wakker (1992). As explained in the previous section, our
representation is a particular case of theirs. Yet it is not simply obtained by enriching the
Sarin & Wakker (1992) axioms with additional requirements. Indeed, our representation
can also be seen as a particular case of that of Savage (1954); That is, for each act f ∈ F ,
we have

ECU(f) =

∫
S2
U1[f(·, s2)]dP2(s2),

where additionally U1 is the function from F1 to R defined, for all f1 ∈ F1, by

U1(f1) =

∫
S1
u ◦ f1(s1) dv1(s1).

Hence, the ECU representation can be obtained by invoking the Savage theorem on the
domain FS21 of functions from S2 to F1 while Sarin & Wakker (1992) invoke it on the
much smaller domain of unambiguous acts F2. Practically, this forces us to appeal to
stronger axioms: our A3(ii) and our A4. As already explained, these two axioms are the
ones forcing a specific treatment of stochastic independence, and are therefore very specific
to our approach and timing of resolution of uncertainty. Yet our application of Savage’s
theorem on a larger domain provides much more and simplifies the rest of the proof: we
only have to construct a capacity on S1 while Sarin and Wakker have to construct one
on all of S. This explains why our A3(i) is weaker than a simple restriction of their P3
to ambiguous events and our A7 is weaker than their A4’. The idea here is that we only
have to deal with acts in F1 to obtain v1, while they have to deal with all of F to obtain
a capacity on S.

5 Ambiguity aversion

The main objective of this section is to define and characterize the notion of ambiguity
aversion within the ECU representation as axiomatically characterized in Theorem 2. All
along the section, we suppose that % satisfies A1-A7 and denote by v1, P2 and u the
capacity, probability and utility obtained by applying Theorem 2.

Let CEU , CEU and ECU denote the real-valued functionals introduced in the Section 3.
For all real-valued functional V on F , %V denotes the relation induced by V on F (i.e.
f %V g ⇔ V (f) ≥ V (g) for all f, g ∈ F). As a consequence, %ECU is just an other way of
writing %.

Let N denote the collection of all functionals from F to R of the form f 7→ EP [u ◦ f ]
for some probability measure P on (S,B) of marginal P2 on S2. We define V := N ∪
{ECU,CEU,CEU}. Hence, V collects the representing functionals for the preferences
of agents that either (1) have an ECU representation with respect to (v1, P2, u), or (2)
have a CEU representation with respect to the same parameters (v1, P2, u), or (3) have a
CEU representation still with respect to these parameters, or finally (4) have a Subjective
Expected Utility representation with respect to u and some probability measure on (S,B)
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whose S2-marginal is specifically given by P2. Note that all such agents have the same
marginal preferences on F2 and hence the same beliefs and risk attitudes toward the (un-
ambiguous) randomization device. As a consequence, these agents possibly differ in terms
of their ambiguity attitudes relative to the ambiguous source S1 of uncertainty.

We now come to the core matter of this section, namely the comparative and absolute
definitions of ambiguity aversion. For all V,W ∈ V , we say that %V is more ambiguity
averse than %W if, for all f2 ∈ F2 and all f ∈ F ,

f2 %
W f ⇒ f2 %

V f and f2 �W f ⇒ f2 �V f.

For all V ∈ V , we say that %V is ambiguity averse (loving) if there exists W ∈ N such
that %V is more ambiguity averse than %W (%W is more ambiguity averse than %V ). A
preference which is both ambiguity averse and ambiguity loving is called ambiguity neutral.

A preference ranking f2 %W f (or f2 �W f) means that Agent W refuses to expose himself
to the ambiguity attached to f and prefers the unambiguous act f2. Hence, the definition
says that the more ambiguity averse agent is one who refuses to expose himself to ambiguity
whenever the less ambiguity averse agent does. Next, we hold the view that Subjective
Expected Utility represents a case of neutrality to ambiguity. This leads to us call an agent
ambiguity averse whenever he is more ambiguity averse than some Subjective Expected
Utility agent. These definitions are similar in spirit to those of Ghirardato & Marinacci
(2002) but they contrast with those of Epstein (1999) and Epstein & Zhang (2001) which
rather take probabilistic sophistication to mean ambiguity neutrality.

The following axiom captures the behavioral content of the assumption of ambiguity aver-
sion under the reversed timing of resolution of uncertainty that we assume:

(A8 - Ambiguity Aversion) For all f2 ∈ F2 and g ∈ F , if {f2 = x} ∼` {g(s1, ·) = x}
for all s1 ∈ S1 and x ∈ X , then f2 % g.

This axiom can be seen as an adequate formalization of what the introduction has called
Choice Pattern (2). Indeed, all the acts g(s1, ·) for s1 ∈ S1 are elements of F2 and hence
unambiguous by definition. Moreover, in the antecedent of A8, all these acts are assumed
to induce the same lottery and therefore be indifferent to each other. Hence, g can be
understood as a mixture of indifferent and unambiguous acts on the various states, or
events, of the ambiguous source S1 of uncertainty. And yet A8 imposes a preference for
the unambiguous act f2 over the possibly ambiguous one g. In other words, A8 simply
expresses an aversion to randomizing indifferent unambiguous acts on ambiguous events.

To better understand A8 and how it comes into contradiction with the AA framework, let
Lf(s1,·) denote the lottery induced by f over X at s1 for all f ∈ F and s1 ∈ S1; that is
Lf(s1,·)(x) = P2(f(s1, ·) = x) for all x ∈ X . The functional defined on S1 by s1 7→ Lf(s1,·)
then corresponds to what we shall call the AA act induced by f . Then, A8 reformulates
as follows: For all f2 ∈ F2 and g ∈ F , if f2 and g induce the same AA act, then, f2 % g.
It is clear from here that the AA framework is typically incompatible with Axiom A8 as
it fails to distinguish between f2 and g. However, there is a major difference between
these two acts; namely, the outcome induced by f2 is independent of the state in S1 and
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hence unambiguous while that induced by g depends in general on the state in S1. This
dependence is certainly a potential source of ambiguity in the evaluation of g and therefore
could be sufficient for an ambiguity averse agent to express a preference for f2 over g, as
required by A8.

To illustrate A8, recall our introductory example. As f only depends on S2, it can be
identified with an act in F2. Meanwhile, and by assumption, we have

Lf(R,·)($10) = Ll(R,·)($10) = 1/2, Lf(R,·)($0) = Ll(R,·)($0) = 1/2,
Lf(B,·)($10) = Ll(B,·)($10) = 1/2, Lf(B,·)($0) = Ll(B,·)($0) = 1/2.

(1)

In this context, A8 applies and leads to the conclusion that f % l. In other words, A8
allows act l to be perceived as ambiguous.

Consider now the following stronger version of A8:

(A8* - Strong Ambiguity Aversion) For all f2 ∈ F2 and g ∈ F , if f2 ∼2 g(s1, ·) for all
s1 ∈ S1, then f2 % g.

This axiom is obtained from A8 by replacing the condition of equality between the AA
acts induced by f2 and g by the weaker condition of statewise indifference2 on S1. As for
A8, A8* can be seen as a formalization of Choice Pattern (2), one expressing an aversion
to randomizing unambiguous acts on ambiguous events. Yet A8* has a greater domain of
applicability than A8. Indeed, Formula (1) from the previous example does not hold if l is
replaced with l′. For instance, we have Ll′(B,·)($0) = 0 while Lf(B,·)($0) = 1/2. Therefore,
f and l′ cannot be compared using A8. However, l′ is clearly ambiguous whereas f is not
and one could naturally expect an ambiguity averse agent to express the preference f % l′.
This ranking can actually be derived from A8* since the two acts satisfy:

f(R, ·) ∼2 l
′(R, ·) and f(B, ·) ∼2 l

′(B, ·). (2)

The core of the capacity v1, denoted by Core(v1), is defined as the set of all probability
measures P1 on S1 satisfying P1(E1) ≥ v1(E1) for all E1 ⊆ S1.

Proposition 3 The following statements are equivalent:

• % satisfies A8 (resp. A8*),

• Core(v1) 6= ∅,

• % is ambiguity averse.

2Our results remain true if one considers the stronger version of A8* obtained by replacing the condition
f2 ∼2 g(s1, ·) for all s1 ∈ S1 by f2 %2 g(s1, ·) for all s1 ∈ S1. A similar remark holds for axioms
A9* and A10* presented hereafter. In the latter case, this change makes A10* the dual of A3(i). We
nonetheless prefer the current formulations of the axioms because they highlight the basic tension between
AA monotonicity and ambiguity aversion in a straightforward way.
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Proposition 3 shows, as expected, the equivalence between ambiguity aversion and each of
A8 and A8*. This justifies retrospectively the terminology of “Ambiguity Aversion” used to
designate the axiom. The proposition also establishes the equivalence to the non-emptiness
of the core of v1. That latter result is similar to that Ghirardato & Marinacci (2002) who
already established the equivalence between ambiguity aversion and the non-emptiness of
the Core(v1) in the case of %CEU .

As a corollary of Proposition 3, we obtain the following result showing that all three
representations CEU , CEU and ECU reveal ambiguity aversion in exactly the same cir-
cumstances. As we will momentarily see, what differs in each of the representations is
rather the amount of ambiguity aversion that is revealed.

Corollary 4 The following statements are equivalent:

• % is ambiguity averse,

• %CEU is ambiguity averse,

• %CEU is ambiguity averse.

We are now interested in characterizing the convexity of the capacity in the ECU represen-
tation. A capacity v1 on S1 is said to be convex if v1(E1∪F1)+v1(E1∩F1) ≥ v1(E1)+v1(F1)
for all E1, F1 ⊆ S1. This property is an important feature for different reasons. First, it
characterizes specific definitions of ambiguity aversion that have been employed in the
literature. See, for instance, Schmeidler (1989). Hence, it plays a significant role in numer-
ous economic applications. See for instance Dow & Werlang (1992). At a different level,
Schmeidler (1989) shows that, under convexity, the Choquet integral can be reinterpreted
as a minimal expectation with respect to the core in the spirit of the maxmin model of
Gilboa & Schmeidler (1989). In this case, ECU can be seen as the integral of such a
minimal expectation and can therefore be thought of as a dual version of maxmin.

An act f ∈ F is said to be slice-comonotonic if it has both comonotonic S1-sections and
comonotonic S2-sections. Consider the following axioms:

(A9(i) - Preference for S1-comonotonicity) For all f, g ∈ F if {f(s1, ·) = x} ∼`
{g(s1, ·) = x} for all s1 ∈ S1 and x ∈ X and f has comonotonic S1-sections, then f % g.

(A9(ii) - Preference for S2-comonotonicity) For all f, g ∈ F , if {f(s1, ·) = x} ∼`
{g(s1, ·) = x} for all s1 ∈ S1 and x ∈ X and f has comonotonic S2-sections, then f % g.

(A9 - Preference for slice-comonotonicity) For all f, g ∈ F , if {f(s1, ·) = x} ∼`
{g(s1, ·) = x} for all s1 ∈ S1 and x ∈ X and f is slice-comonotonic, then f % g.

As already explained in the discussion of Proposition 1, the comonotonicity of S1-sections
(respectively S2-sections) reveals that the uncertainty across different states in S1 (resp.
S2) does not hedge itself. Moreover, the premises in A9(i) and A9(ii) are similar to that
of A8 and impose the equality between the AA acts induced by f and g. Hence, the two
axioms can be rephrased as follows: if two acts induce the same AA act and if one offers
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no hedges (either on S1 or S2), then it is weakly preferred to the other one. In other words,
A9(i) and A9(ii) embody some aversion toward uncertainty hedges.

To illustrate, consider acts f and l from the introductory example. Clearly, the sections
of l are neither comonotonic on S1 nor on S2 and, therefore, l provides uncertainty hedges
on both S1 and S2. Hence, in the AA framework, the agent is always indifferent between
l and the unambiguous act f . Meanwhile, for an ECU agent assigning capacities of 0 to
each of R and B, l is evaluated as if it resulted in a sure amount of $0 at each of H and
T . In this case, f is strictly preferred to l.

Let us also recall our example from Section 3 and consider acts f ′ and l′. The former has
comonotonic S1-sections while the latter does not. Moreover, the two induce the same AA
act. Hence, A9(i) applies and provides the conclusion f ′ % l′. In contrast, A9(ii) does
not apply here as the S2-sections of f ′ are not comonotonic. Yet, in other cases, A9(ii)
applies while A9(i) does not. For instance, h′ and h′′ have each comonotonic S2-sections
and induce the same AA act. Hence, A9(ii) provides h′ ∼ h′′ while A9 remains silent
because none of h′ and h′′ has comonotonic S1-sections. Finally, in still other cases, both
axioms apply. For instance, both lead to f ′′ % l′′ because f ′′ and l′′ induce the same AA
act and f ′′ is slice-comonotonic.

Axiom A9 is similar in spirit to each of A9(i) and A9(ii) as it also embodies an aversion to
hedges. But it is also weaker than each of them since it only applies to slice-comonotonic
acts. Furthermore, note that all acts in F2 are slice-comonotonic. For this reason, each of
A9(i), A9(ii) and A9 trivially implies A8 and thus ambiguity aversion. Finally, it is possible
to strengthen A9 in exactly the same way that A8* strengthens A8; that is, by considering
situations where f and g are statewise indifferent on each state in S1, and not only when
they induce the same AA act. Such a strengthening yields the following axiom A9*, which
the next proposition will show to be equivalent to A9 under the ECU representation.

(A9* - Strong preference for slice-comonotonicity) For all f, g ∈ F , if f(s1, ·) ∼2

g(s1, ·) for all s1 ∈ S1 and f is slice-comonotonic, then f % g.

The next proposition shows that each of the four axioms characterizes the convexity of v1
in the representation of Theorem 2 and hence how they are all equivalent to each other
in the ECU representation. It also shows how convexity characterizes those cases where
ECU reveals more ambiguity aversion than each of CEU and CEU .

Proposition 5 The following statements are equivalent:

• % satisfies Axiom A9(i) (resp. A9(ii), resp. A9, resp. A9*),

• v1 is convex,

• % is more ambiguity averse than %CEU (resp. %CEU).

Broadly speaking, Proposition 5 shows that the convexity of v1 is equivalent in the ECU
representation to various forms of aversion to uncertainty hedges. Such aversion is truly
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a peculiar feature of our model and its reversed timing of resolution of uncertainty. In
an AA framework, ambiguity averse agents are typically attracted by hedges because they
scatter the good outcomes over the ambiguous states and hence reduce the exposure to
ambiguity. However, in doing so, hedges also necessarily scatter the bad outcomes over the
unambiguous events. Under our reversed timing of resolution of uncertainty, ambiguity
averse agents are rather sensitive to the latter unpleasant view of uncertainty hedges,
and non-sensitive to the former one. To them, hedges only reduce the gains they get on
unambiguous events, and this finally explains their aversion to them.

Proposition 5 additionally suggests that ambiguity aversion under ECU and its reversed
timing of resolution of uncertainty might have a quantitatively more significant impact in
economic applications than under CEU or CEU . We briefly illustrate this possibility in
the context of the Dow & Werlang (1992) no trade intervals. Suppose momentarily that
the alternatives are monetary assets; that is, suppose X ⊆ R and, for simplicity, u = Id.
Fix a representation V ∈ V and an act f ∈ F . Following Dow & Werlang (1992), we may
interpret V (f) and −V (−f) as the expected returns from buying and selling f respectively.
The gap between these two values then corresponds to the range of prices where the DM
takes no position in the asset. It is called the No-trade Interval of f relative to V and
formally defined as the (possibly empty) interval:

NTV (f) := (V (f),−V (−f)) .

Taken together, Proposition 5 and Lemma 16 show, under the assumption of convexity,
that for all f ∈ F

NTCEU(f) ⊆ NTCEU(f) ⊆ NTECU(f).

In other words, ECU predicts larger no trade intervals than each of CEU and CEU under
the assumption of convexity. In particular, it is possible to have a nontrivial interval
NTECU(f) even when both NTCEU(f) and NTCEU(f) are empty. More generally, Lemma
16 formalizes the natural intuition promoted by Dow & Werlang, that more ambiguity
aversion implies larger no trade intervals.

Finally, it is easy to obtain from the previous proposition a characterization of additivity
for v1. The latter uses the following axiom which simply requires acts that induce the same
AA act to be indifferent.

(A10 - Ambiguity Neutrality) For all f, g ∈ F , if {f(s1, ·) = x} ∼` {g(s1, ·) = x} for
all s1 ∈ S1 and all x ∈ X , then f ∼ g.

As usual by now, A10 can be strengthened into A10* which applies more generally as soon
as the acts f and g are statewise indifferent on each state in S1. In doing so, A10* proves
to be a version of monotonicity dual in spirit to that of A3(i).

(A10* - Dual Monotonicity) For all f, g ∈ F , if f(s1, ·) ∼2 g(s1, ·) for all s1 ∈ S1, then
f ∼ g.

Proposition 6 The following statements are equivalent:
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• % satisfies Axiom A10 (resp. A10*),

• % is ambiguity neutral,

• v1 is additive.

6 Discussion and related literature

Let L(X ) denote the set of all finitely-supported lotteries on X , A1 the set of all finitely-
valued functions from S1 to L(X ) and L(A1) the set of all finitely-supported lotteries onA1.
In its original form, the framework of Anscombe & Aumann (1963) deals with preferences
applying to L(A1). In this context, the two key axioms that yield an SEU representa-
tion are Monotonicity with respect to S1 and Reversal of Order, a form of indifference
between ex ante and ex post randomizations. In order to accommodate ambiguity aver-
sion in the original AA framework, recent papers as Seo (2009) and Martins da Rocha &
Mouallem Rosa (2021) suggest dropping Reversal of Order while sticking to Monotonicity.

Also, Fishburn (1970) and Schmeidler (1989) provide an alternative account of the AA
theorem where preferences only apply to A1. In this context, the two key axioms that
yield an SEU representation are Monotonicity (still on S1) and Independence, a form of
separability with respect to the randomization device implicit in L(X ). In his seminal
contribution, Schmeidler accommodates ambiguity aversion by weakening Independence
but once again sticking to Monotonicity. From there, many subsequent papers followed
this approach including Gilboa & Schmeidler (1989) or Ghirardato et al. (2004).

Yet several authors challenge such AA monotonic models of ambiguity aversion on various
grounds. First, the papers of Eichberger & Kelsey (1996) and Eichberger et al. (2016) entail
a critique of what we have here called Choice Pattern (1) in the introduction. These authors
assume a product structure of the state space S1×S2 with objective probabilities on S2 and
identify plausible conditions under which an agent is indifferent to randomizations in the
following sense: For all f1, g1 ∈ F1 and E2 ⊆ S2, if f1 ∼1 g1, then f1E2

g1 ∼ f1 ∼ g1. This
property has already been met in Section 4 and is here implied by A3(i). Now, Eichberger
& Kelsey (1996) derive it from their assumption of Device Independence with Symmetric
Randomizations (DISR) which assumes the indifference with respect to randomizations
between acts in F1 on events in S2 of same probability. DISR is hence comparable to
our A4. Moreover, Eichberger et al. (2016) derive the indifference to randomizations from
Dynamic Consistency and Consequentialism, both expressed with respect to S2, and also
a property of stochastic independence between S1 and S2. Interestingly, their model also
appeals to a third source S3 and includes the possibility of ex post randomizations which
occur after the realization of the ambiguous state. Then, ambiguity aversion causes a
preference for randomizing ambiguous acts on events from the randomization device used
ex post. In contrast, our model does not allow for the possibility ex post randomizations.
Ambiguity aversion rather reveals itself through Choice Pattern (2) and the aversion to
randomizing unambiguous acts on ambiguous events.
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Second, as already explained in the introduction, Oechssler & Roomets (2014), Bade (2015)
and Kuzmics (2017) call the relevance of random incentive mechanisms for the elicitation of
ambiguous beliefs into question. See also Baillon et al. (2019) and Baillon et al. (2022). We
now explain how our model and its reversed timing overcome the difficulty. Suppose that
a DM needs to make a decision in two problems Ca

1 , C
b
1 ⊆ F1. An analyst determines at

random the problem according to which the DM is paid. To this effect, a partition {Ea
2 , E

b
2}

of S2 is used: if Ea
2 (resp. Eb

2) obtains, the DM is paid according to his choice in Ca
1 (resp.

Cb
1). Suppose also that fa1 and f b1 are optimal in Ca

1 and Cb
1 respectively. Then, for all ga1 ∈

Ca
1 and gb1 ∈ Cb

1, we have fa1 %1 g
a
1 and f b1 %1 g

b
1. The property of Stochastic Independence

met in Section 4 implies fa1 %Ea
2
ga1 and f b1 %Eb

2
gb1. From there, Consequentialism and

Dynamic Consistency (still from Section 4) lead to fa1 Ea
2
f b1 % ga1Ea

2
gb1. In words, the DM

will report his truly preferred options in each of the two decision problems. Note that the
argument here can be refined by appealing to a strict version of Dynamic Consistency to
show that the DM only reports his truly preferred options.

The lesson here is that our reversed timing of resolution of uncertainty allows us to main-
tain ambiguity on S1 and yet have a sufficiently strong version of the Sure-Thing Principle
that implies both Consequentialism and Dynamic Consistency with respect to S2. Then,
an adequate notion of Stochastic Independence between the two sources that acknowledges
the reversed timing is sufficient to deliver the incentive compatibility of random incentive
mechanisms. Models that yield incentive incompatibility fail to have these features. For
instance, in Bade (2015), the Sure-Thing Principle is restricted to F2 à la Grabisch et al.
(2022). Meanwhile, the notion of stochastic independence used is that of Gilboa & Schmei-
dler (1989) or Klibanoff (2001). Because S2 carries a single probability measure, this notion
is equivalent to Ceron and Vergopoulos’ (2021) product ⊗1 which characterizes dominance
with respect to S1 and hence what we call here AA monotonicity and the direct timing of
resolution of uncertainty. Likewise, Kuzmics (2017) commits to the direct timing by simply
supposing that the agent has well-defined preferences on AA acts. This is confirmed by his
use of Dominance both in his Axiom 1 and in his motivating example. Such Dominance
is again what we call here AA monotonicity. Finally, Oechssler & Roomets (2014) use the
same notion of stochastic independence as Bade (2015) but acknowledge the possibility of
escaping incentive incompatibility by appealing to what they call “superstitious ambiguity
attitudes”. This corresponds to what Ceron & Vergopoulos (2021) denote ⊗2.

Third, Bommier (2017) also develops a dual approach to ambiguity aversion. As we have
seen in Section 3, Bommier’s dual approach as specified in the Choquet case is based on
the same timing of resolution of uncertainty as that of Schmeidler (1989), but uses it in a
different way. In fact, Bommier sticks to the AA framework and weakens AA monotonicity.
As a consequence, his approach would still lead to the indifference between f , g and l in
our introductory example but would possibly explain a preference for f or g over l′.

Fourth, the experimental literature provides little support to the AA framework, AA Mono-
tonicity and Choice Pattern (1). For instance, Dominiak & Schnedler (2011) report results
in the context of our introductory example where approximately half of the ambiguity
averse agents surprisingly ignore the hedging opportunity provided by diagonal acts and
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rather express an indifference between h, k and l. Such indifference is impossible to obtain
under the AA timing but is in contrast implied by the reversed timing. In fact, Dominiak
and Schnedler define ambiguity aversion as a preference for f and g over h and k. Hence,
the indifference between h, k and l that they observe means a preference for f and g over
l. Such a preference remains consistent with ambiguity aversion in the sense of Choice
Pattern (2). For another example, Oechssler & Roomets (2021) slightly increase the gains
delivered by diagonal acts so as to have them dominating each of f and g at each of R
and B. Yet approximately one third of their subjects chose f or g against these improved
diagonal acts in contradiction with AA monotonicity, thereby revealing again, but in a
different and more robust way, the ambiguity they attach to diagonal acts and events.
Furthermore, the two treatments of their experiment show that a significant proportion
of the individuals choose between h (or k) and l only on the basis of their payments: a
slight increase in the payment of each makes it preferred to the other one. This reflects an
indifference between the diagonal event and the ambiguous events, a conclusion consistent
with ECU. Finally, Oechssler et al. (2019) provide their subjects the opportunity to make
a choice between h, k and l under the different timings of resolution of uncertainty. Some-
what surprisingly, the different timings proposed do not seem to influence choices. Indeed,
under every timing, only one third of their ambiguity averse subjects chose a diagonal act.
No matter what timing is announced, the remaining two thirds hence make choices that
are consistent with the implications of the reversed timing. Baillon et al. (2022) confirm
in particular the latter finding.

We now examine possible objections to our approach. On the one hand, it might be ob-
jected that it is not necessary to appeal to a randomization device to interpret the AA
framework. The latter can simply be understood as a case where the outcome space has
a convex structure, like, for instance, that of a convex consumption set. This view would
naturally make the issue of the timing of resolution of uncertainty quite irrelevant. How-
ever, it is unlikely to get us very far. Think for instance of the AA Independence axiom.
What makes it so compelling is the basic intuition that there can be no meaningful com-
plementarity between outcomes obtained on incompatible events. Moscati (2016) explains
in detail how this intuition helped Samuelson to accept Independence. Now, defending
the AA framework by denying the probabilistic interpretation of the convex structure and
appealing to convex consumption sets seems to open the door to meaningful complemen-
tarity effects. In short, it will be beer and bretzel instead of beer or bretzel. It is then no
longer clear why an agent would satisfy the AA Independence axiom or its weaker versions
like those of Schmeidler (1989) and the subsequent ambiguity literature. Likewise, it is
not clear what the AA original axiom of Reversal of Order would mean under this view.
Finally, what makes the assumption of a randomization device inevitable is not just the
convex structure of the outcome space but also the sound interpretation of the axioms.

On the other hand, our dual theory of ambiguity aversion inevitably suffers from limitations
that are dual to those that the Schmeidler (1989) model inherits from its use of the AA
framework. For instance, because it sticks to the reversed timing, our approach makes a
blind commitment to Choice Pattern (2) and leaves no room for Choice Pattern (1). Yet,
it seems clear that a general theory of ambiguity aversion should accommodate both, and
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this can only be done if no specific timing is assumed. For instance, the one-stage theory
of Sarin & Wakker (1992) would allow to implement this alternative project. However,
this would run into conceptual difficulties. Indeed, as a key feature, the randomization
device and the ambiguous source are stochastically independent from each other; that is,
observing the true state in either source does not convey information as to which state
will obtain in the other source and hence should not affect the preferences and beliefs
relative to this other source. Now, it is known in the literature that imposing the full
requirement symmetrically across the two sources is too restrictive and forbids for instance
the Ellsberg (1961) choice pattern. See Ceron & Vergopoulos (2021). But it is nonetheless
possible to impose an asymmetric version of this requirement. And which asymmetric
version is appropriate to impose depends on the timing of resolution: if, for instance, the
randomization device resolves first, then it makes sense to suppose that observing the
outcome of the randomization device does not affect the preference and beliefs relative to
the ambiguous source. Finally, the point here is that the assumption of a specific timing
is needed to model the stochastic independence between the two sources. Without it, one-
stage approaches to ambiguity leave this important informational feature of the decision
problem out of the model and condemn themselves to preferences and beliefs relative to
the one source depending on the state in the other source, a hardly compelling motive in
our view. An alternative route could consist in including the possibility of each timing
by appealing to Saito (2015). However, it is again not clear if this route would deliver an
adequate notion of stochastic independence, or remain compatible with the use of random
incentive mechanisms.

Finally, we close with a remark of independent interest. In a recent contribution, Hartmann
(2020) shows that Savage’s P3 is redundant in the sense that it is implied by the other
axioms. However, if one restricts preferences to finitely-valued acts, then Savage’s P7 is
no longer required. In this case, the axioms no longer imply P3 which must therefore still
be explicitly postulated. Our proof of Theorem 2 nonetheless shows that “half” of P3 is
still redundant and that it is possible to obtain it from the other axioms. Concretely, this
explains why our A3(i) only assumes an implication, as opposed to requiring additionnally
a strict preference f � g whenever f(·, s2) � g(·, s2) for all s2 in some nonnull subset.

7 Appendices

Appendix A – Proof of Theorem 2

Elements of F being finitely-valued we have that f(·, s2) ∈ F1 for all f ∈ F and all s2 ∈ S2.
Let Φ be the function from F to FS21 defined by Φ(f)(s2) = f(·, s2) for all f ∈ F and
s2 ∈ S2. Φ is clearly injective and thus we can define without ambiguity the image %∗ of
% on Φ(F) by setting for all F,G ∈ Φ(F),

F %∗ G ⇐⇒ Φ−1(F ) % Φ−1(G).
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Lemma 7 If % satisfies Axioms A1, A2, A3(i), A4, A5, A6, then there exists a convex-
ranged probability measure P2 on S2 and a non-constant function U1 from F1 to R such
that for all f, g ∈ F ,

f % g ⇐⇒
∫
S2
U1[f(·, s2)] dP2(s2) ≥

∫
S2
U1[g(·, s2)] dP2(s2). (3)

Moreover, P2 is unique, and U1 is unique up to positive affine transformations.

Proof. Since acts are finitely-valued and B-measurable, Φ(F) is the set of all the finitely-
valued functions from S2 to F1. Observe that Φ(fE2g) = Φ(f)E2Φ(g) for all f, g ∈ F
and E2 ⊆ S2. Axioms A1, A2, A4 and A6 then imply that %∗ satisfies P1, P2, P4
and P6 of Savage (1954). In parallel, note that A5 obviously implies the non-
triviality of %∗. Therefore, it is sufficient to prove that A3(i) implies that %∗

satisfies Savage’s P3 to invoke the Savage Theorem.

Let us say that an event E2 ⊆ S2 is null if fE2h ∼ gE2h for all f, g, h ∈ F . Savage’s
P3 applied to %∗ then reformulates as follows:

(A3*(i)) For all non-null E2 ⊆ S2, all f1, g1 ∈ F1 and all h ∈ F , f1 %1 g1 if and
only if f1E2

h % g1E2
h.

Fix a non-null E2 ⊆ S2, f1, g1 ∈ F1 and h ∈ F . By A3(i), if f1 %1 g1, then, we
immediately have f1E2

h % g1E2
h. Suppose f1 �1 g1. E2 being non-null there exist

f, g, k ∈ F such that fE2k � gE2k. Consider f ∗1 , g
∗
1 ∈ F1 such that f ∗1 %1 f(·, s2)

and g(·, s2) %1 g
∗
1 for all s2 ∈ S2. The existence of such elements f ∗1 , g

∗
1 ∈ F1 is

guaranteed by the finiteness of the ranges of Φ(f) and Φ(g). By contrapositive of
A3(i) there must be some s2 ∈ S2 such that fE2k(·, s2) �1 gE2k(·, s2) and therefore
f(·, s2) �1 g(·, s2). It follows that f ∗1 �1 g

∗
1. Iterative applications of A3(i) yields

f ∗1E2
k % fE2k and gE2k % g∗1E2

k.

Since, fE2k � gE2k, we then have, by transitivity of % and A2

f ∗1E2
g∗1 � g∗1E2

g∗1 = g∗1 = f ∗1 ∅g
∗
1.

Finally, by A4
f1E2

g1 � f1∅g1 = g1E2
g1,

and by A2 again
f1E2

h � g1E2
h.

2

Lemma 8 Suppose % satisfies Axioms A1-A7. Let P2 be the probability measure from
Lemma 7. Then,

(i) For all E1 ⊆ S1, there exists E2 ⊆ S2 such that E1 ∼` E2,
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(ii) For all E1 ⊆ S1, E2 ⊆ S2 and all x∗, x, y∗, y ∈ X such that x∗ � x and y∗ � y,
x∗E1

x ∼ x∗E2
x if and only if y∗E1

y ∼ y∗E2
y.

(iii) For all E2, F2 ⊆ S2, E2 %` F2 if and only if P2(E2) ≥ P2(F2),

(iv) For all E1, F1 ⊆ S1 and all x∗, x, y∗, y ∈ X such that x∗ � x and y∗ � y,
x∗E1

x ∼ x∗F1
x if and only if y∗E1

y ∼ y∗F1
y.

Proof. Consider E1 ⊆ S1 and x, y ∈ X such that x � y (existence guaranteed by A5). By
A3 (ii), we obtain x %1 xE1y %1 y. Formula (3) further yields U1(x) ≥ U1(xE1y) ≥
U1(y). So there exists λ ∈ [0, 1] such that U1(xE1y) = λ ·U1(x) + (1− λ) ·U1(y). P2

being convex-ranged, there exists a subset E2 ⊆ S2 such that P2(E2) = λ. Then a
new application of Formula (3) gives xE2y ∼ xE1y and therefore E1 ∼` E2.

As for item (ii), consider E1 ⊆ S1, E2 ⊆ S2 and x∗, x, y∗, y ∈ X such that x∗ � x
and y∗ � y. Suppose that x∗E1

x ∼ x∗E2
x. Observe that {y∗E1

y % z} ∼` {y∗E2
y % z}

for all z ∈ X . Indeed, if z � y∗ then {y∗E1
y % z} = {y∗E2

y % z} = ∅; if y∗ % z � y
then {y∗E1

y % z} = E1 and {y∗E2
y % z} = E2, and we have E1 ∼` E2 because

x∗E1
x ∼` x∗E2

x; finally, if y % z, then {y∗E1
y % z} = {y∗E2

y % z} = S. By Axiom A7,
y∗E1

y ∼ y∗E2
y.

For any x, y ∈ X and E2, F2 ⊆ S2, formula (3) yields

x % y ⇔ U1(x) ≥ U1(y)

xE2y %2 xF2y ⇔ [U1(x)− U1(y)] · [P2(E2)− P2(F2)] ≥ 0.

By A5 there exists x∗, x ∈ X satisfying x∗ � x and thus

x∗E2
x %2 x

∗
F2
x ⇔ P2(E2) ≥ P2(F2).

Item (iii) then immediately follows.

Finally, consider E1, F1 ⊆ S1 and x∗, x, y∗, y ∈ X such that x∗ � x and y∗ � y.
Suppose that x∗E1

x ∼ x∗F1
x. By item (i), there exists E2, F2 ⊆ S2 such that E1 ∼` E2

and F1 ∼` F2. By item (ii), x∗E1
x ∼ x∗E2

x and x∗F1
x ∼ x∗F2

x but also y∗E1
y ∼ y∗E2

y
and y∗F1

y ∼ y∗F2
y. By transitivity of % we have x∗E2

x ∼ x∗F2
x. It follows from item

(iii) that y∗E2
y ∼ y∗F2

y. Applying transitivity of % again we get y∗E1
y ∼ y∗F1

y. 2

It easily follows from Lemma 8 (and Axiom A1) that ∼` is transitive on 2S1∪2S2 and hence
an equivalence relation. Then, if E1 ⊆ S1 and E2, F2 ⊆ S2 are such that E1 ∼` E2 and
E1 ∼` F2, we have E2 ∼` F2 or by item (iii) of Lemma 8 P2(E2) = P2(F2). It is meaningful
then to define a function v1 from 2S1 to [0, 1] by setting, for all E1 ⊆ S1,

v1(E1) = P2(E2), (4)

where E2 ⊆ S2 is any subset such that E1 ∼` E2. Such a subset exists by Lemma 8(i).
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Lemma 9 Suppose % satisfies Axioms A1-A7. Let P2 be the probability measure from
Lemma 7 and v1 be as in Formula (4). Then,

(i) For all E1 ⊆ S1 and E2 ⊆ S2, E1 ∼` E2 if and only if P2(E2) = v1(E1),

(ii) v1 is a capacity on S1.

Proof. The forward implication of (i) holds by definition of v1. Suppose now E1 ⊆ S1
and E2 ⊆ S2 are such that P2(E2) = v1(E1). By Lemma 8(i), there exists F2 ⊆ S2
such that E1 ∼` F2. Then, by the definition of v1, we have P2(F2) = v1(E1) and
therefore P2(E2) = P2(F2). Lemma 8 (iii) yields F2 ∼` E2. ∼` being transitive on
2S1 ∪ 2S2 , we must have E1 ∼` E2.

Clearly, we have ∅S1 ∼` ∅S2 (because ∅×S2 ∼` S1×∅). This implies v1(∅) = P2(∅) =
0. Likewise, we have S1 ∼` S2. This implies v1(S1) = P2(S2) = 1.

Finally, consider E1, F1 ⊆ S1 such that E1 ⊆ F1. Fix x∗, x ∈ X such that x∗ � x.
A standard application of A3(ii) shows x∗F1

x % x∗E1
x. By Lemma 8(i), there exist

E2, F2 ⊆ S2 such that E1 ∼` E2 and F1 ∼` F2. Furthermore, by Lemma 8(ii),
x∗F2

x ∼ x∗F1
x and x∗E2

x ∼ x∗E1
x. Then, by transitivity of %, x∗F2

x % x∗E2
x and, by

the definition of v1 and Lemma 8(iii), v1(E1) = P2(E2) ≤ P2(F2) = v1(F1). 2

Lemma 10 Suppose % satisfies Axioms A1-A7. Let (P2, U1, v1) be as in Lemma 7 and
Formula (4). Let u be the non-constant function from X to R defined by u(x) = U1(x) for
all x ∈ X . Then, U1(f1) =

∫
S1 u ◦ f1 dv1 for all f1 ∈ F1.

Proof. Consider f1 ∈ F1. There exists a finite partition {E1
1 , . . . , E

N
1 } of S1 and a collection

{x1, . . . , xN} satisfying x1 % . . . % xN such that f is equal to xn on En
1 for all

n ∈ [1 . . . N ]. Set also E0
1 = ∅.

P2 being convex-ranged, we can find a finite partition {E1
2 , . . . , E

N
2 } of S2 such that

P2(E
n
2 ) = v1(E

1
1 ∪ . . .∪En

1 )−v1(E1
1 ∪ . . .∪En−1

1 ) for all n ∈ [1 . . . N ]. Let f2 ∈ F2 be
the act equal to xn on En

2 for every n ∈ [1 . . . N ]. By construction and by Lemma
9(i), we have

P2({f2 %2 x}) = v1({f1 %1 x}) and hence {f1 %1 x} ∼` {f2 %2 x} for all x ∈ X .

Then, by A7, we obtain f1 ∼ f2. Formula (3) further yields

U1(f1) = EP2 [u ◦ f2]

=
N∑
n=1

u(xn) · P2(E
n
2 )

=
N∑
n=1

u(xn) · [v1(E1
1 ∪ . . . ∪ En

1 )− v1(E1
1 ∪ . . . ∪ En−1

1 )]

=

∫
S1
u ◦ f1 dv1.

2

27



Proof of Theorem 2.
The sufficiency of the axioms follows readily from previous Lemmata.

Suppose (v1, P2, u) provides the representation of % claimed in Theorem 2 and let
V denote the resulting representing functional from F to R. The necessity of A5 is
an immediate consequence of the fact that u is non-constant. Defining a mapping
U1 from F1 to R by U1(f1) =

∫
S1 u ◦ f1dv1 for all f1 ∈ F1, we obtain a SEU

representation of % as the one of Formula (3). Then, the preference induced by
V on Φ(F) satisfies P1, P2, P3, P4, and P6 of Savage (1954) which respectively
reformulate as A1, A2, A3*(i) (from the proof of Lemma 7), A4, and A6 on %. Since
acts are finitely-valued and B-measurable, A3(i) is actually equivalent to: for all
E2 ⊆ S2, all f1, g1 ∈ F1 and all h ∈ F if f1 %1 g1, then f1E2

h % g1E2
h. That latter

condition is obviously implied by A3*(i). A3(ii) follows from the monotonicity of
the Choquet’s integral. A7 follows from the definition of the Choquet’s integral
and from noting that the restriction of V to F1 (resp. F2) is the Choquet (resp.
Lebesgue) expected utility with respect to v1 (resp. P2).

As for the uniqueness, suppose (v1, P2, u) and (v′1, P
′
2, u
′) both provide a represen-

tation of %. Then, consider the mappings U1 and U ′1 from F1 to R defined by
U1(f1) =

∫
S1 u ◦ fdv1 and U ′1(f1) =

∫
S1 u

′ ◦ fdv′1 for all f1 ∈ F1. Then, both (P2, U1)
and (P ′2, U

′
1) provide an SEU representation of % as in Lemma 7. By uniqueness,

we must have P2 = P ′2 and U ′1 = aU1 + b for some a > 0 and b ∈ R. The latter
implies u′ = au+ b and v1 = v′1. 2

Appendix B – Proof of other results

Preliminary Results

Consider two sets E and E ′ endowed with capacities v and v′ respectively. Let BE×E ′ denote
the Boolean algebra generated by the rectangles E × E ′ for E ⊆ E and E ′ ⊆ E ′. Let ζ
be a finitely-valued BE×E ′-measurable function from E × E ′ to R. We define two capacities
v ⊗ v′ and v′ ⊗ v on E × E ′ by setting, for all A ⊆ E × E ′,

v ⊗ v′(A) :=

∫
E

∫
E ′
1A dv

′dv v′ ⊗ v(A) :=

∫
E ′

∫
E
1A dvdv

′.

Lemma 11 For all A ∈ BE×E ′, if 1A is slice-comonotonic, then v ⊗ v′(A) = v′ ⊗ v(A).

Proof. The result is straightforward from the definitions if A is a rectangle. Suppose now
that v and v′ are additive. Each A ∈ BE×E ′ is a finite disjoint union of rectangles,
and the result follows from the additivity of v and v′.

We consider now the general case. Fix e′ ∈ E ′. The functions e 7→ 1A(e, e′) and e 7→
v′(A(e)) are comonotonic. Indeed, suppose 1A(e1, e

′) < 1A(e2, e
′) and v′(A(e1)) >

v′(A(e2)). Then, (e1, e
′) /∈ A and (e2, e

′) ∈ A. But furthermore, since 1A is slice-
comonotonic, we have A(e1) ⊆ A(e2) or A(e1) ⊇ A(e2). By the monotonicity of
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v′, we obtain A(e1) ⊇ A(e2). Since e′ ∈ A(e2), we finally obtain e′ ∈ A(e1), a
contradiction. Then, by Schmeidler (1986), there exists a probability measure P on
E such that

v ⊗ v′(A) =

∫
E

∫
E ′
1A dv

′dP v′ ⊗ v(A) =

∫
E ′

∫
E
1A dPdv

′.

Now fix e ∈ E . Proceeding as in the previous paragraph, we can show that the func-
tions e′ 7→ 1A(e, e′) and e′ 7→ P (A(e′)) are comonotonic. Then, still by Schmeidler
(1986), there exists a probability measure P ′ on E ′ such that

v ⊗ v′(A) =

∫
E

∫
E ′
1A dP

′dP v′ ⊗ v(A) :=

∫
E ′

∫
E
1A dPdP

′.

The result finally follows from the first paragraph of the proof. 2

Lemma 11 formalizes Ghirardato (1997) Remark 1 and proves that v ⊗ v′ and v′ ⊗ v
both satisfy Ghirardato’s condition of Fubini-Independence. Ghirardato’s Lemma 3 then
immediately implies Lemma 12 below.

Lemma 12 If ζ has comonotonic E ′-sections, then,∫
E

∫
E ′
ζ dv′dv =

∫
E×E ′

ζ dv ⊗ v′ =

∫
E×E ′

ζ dv′ ⊗ v.

Finally, we will also need the following two lemmata:

Lemma 13 If v is additive, then∫
E

∫
E ′
ζ dv′dv =

∫
E×E ′

ζ dv ⊗ v′.

Proof. ∫
E

∫
E ′
ζdv′dv =

∫
E

[∫
[min(ζ),max(ζ)]

v′(ζ ≥ t) dt+min(ζ)

]
dv

=

∫
[min(ζ),max(ζ)]

∫
E
v′(ζ ≥ t) dvdt+min(ζ)

=

∫
[min(ζ),max(ζ)]

∫
E

∫
E ′
1{ζ≥t} dv

′dvdt+min(ζ)

=

∫
[min(ζ),max(ζ)]

v ⊗ v′(ζ ≥ t) dt+min(ζ)

=

∫
E×E ′

ζ dv ⊗ v′,

where the second line is by the additivity of v and because the inner integral takes
only a finite number of values. 2
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Lemma 14 If v and v′ are both additive, then∫
E

∫
E ′
ζ dv′dv =

∫
E ′

∫
E
ζ dvdv′ =

∫
E×E ′

ζ dv′ ⊗ v =

∫
E×E ′

ζ dv ⊗ v′.

Proof. It is an immediate consequence of the fact that ζ is finitely-valued and BE×E ′-
measurable. See also Marinacci (1997). 2

Proof of Proposition 1

Consider v1, P2 and u as Theorem 2 and fix an act f ∈ F . Applying a positive affine
transformation if necessary, we may suppose (without loss of generality) min(u ◦ f) = 0
and max(u ◦ f) = 1. Let λ[0,1] (resp. λ) denote the Lesbegue measure on Borel subsets of
[0, 1] (resp R) and R(f) be the function defined as follows:

R(f) :

{
S1 × [0, 1] → [0, 1]

(s1, t) 7→ P2(u ◦ f(s1, ·) ≥ t).

We now provide different reformulations for ECU(f), CEU(f) and CEU(f).

First, note that

• CEU(f) =
∫
S1

∫
[0,1]

R(f) dtdv1,

• CEU(f) =
∫
[0,1]

∫
S1 R(f)dv1(s1)dt.

In parallel, observe that:

CEU(f) =

∫
[0,1]

∫
S1
P2(u ◦ f(s1, ·) ≥ t) dv1(s1)dt

=

∫
[0,1]

∫
S1

∫
S2
1{u◦f(s1,s2)≥t} dP2(s2)dv1(s1)dt

=

∫
[0,1]

v1 ⊗ P2(u ◦ f ≥ t) dt

=

∫
S
u ◦ f dv1 ⊗ P2.

Finally, by applying Lemma 13 to the definition of ECU(f) and the first rewriting of
CEU(f) above, we obtain:

• ECU(f) =
∫
S u ◦ f dP2 ⊗ v1,

• CEU(f) =
∫
[0,1]×S1 R(f) dλ[0,1] ⊗ v1.

The formulas of ECU(f) and CEU(f) as Choquet integrals on the product space S1×S2
above prove that the two criteria are indeed particular cases of Sarin & Wakker (1992) as
claimed in Section 3. Now, by Lemma 12, we have that
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• If f has comonotonic S1-sections, then∫
S u ◦ f dP2 ⊗ v1 =

∫
S u ◦ f dv1 ⊗ P2 =

∫
S2

∫
S1 u ◦ f dv1dP2,

• If f has comonotonic S2-sections, then∫
S u ◦ f dP2 ⊗ v1 =

∫
S u ◦ f dv1 ⊗ P2 =

∫
S1

∫
S2 u ◦ f dP2dv1,

• If for any pair t, t′ ∈ [0, 1], the functions R(f)(·, t) and R(f)(·, t′) from S1 to [0, 1] are
comonotonic, then∫
[0,1]×S1 R(f) dλ[0,1] ⊗ v1 =

∫
[0,1]×S1 R(f) dv1 ⊗ λ[0,1] =

∫
S1

∫
[0,1]

R(f) dλ[0,1]dv1.

The first two items of Proposition 1 immediately follow. The third one follows from the
next and last lemma.

Lemma 15 Consider t, t′ ∈ [0, 1]. If f(s1, ·)�f(s′1, ·) or f(s′1, ·)�f(s1, ·) for all s1, s
′
1 ∈ S1,

then R(f)(·, t) and R(f)(·, t′) are comonotonic.

Proof. Fix s1, s
′
1 ∈ S1 and suppose without loss of generality that f(s1, ·) � f(s′1, ·). By

definition of stochastic dominance and representation of Theorem 2 we have that

P2(u ◦ f(s1, ·) ≥ t) ≥ P2(u ◦ f(s′1, ·) ≥ t)

P2(u ◦ f(s1, ·) ≥ t′) ≥ P2(u ◦ f(s′1, ·) ≥ t′).

Therefore,

[P2(u◦f(s1, ·) ≥ t)−P2(u◦f(s′1, ·) ≥ t)]·[P2(u◦f(s1, ·) ≥ t′)−P2(u◦f(s′1, ·) ≥ t′)] ≥ 0

or again
[R(f)(s1, t)−R(f)(s′1, t)] · [R(f)(s1, t)−R(f)(s′1, t)] ≥ 0

As s1, s
′
1 ∈ S1 are arbitrary chosen, the previous equation holds for any s1, s

′
1 ∈ S1

and the functions R(f)(·, t) and R(f)(·, t′) are comonotonic. 2

Proof of Proposition 3 and Corollary 4

Lemma 16 For any V,W ∈ V, the following statements are equivalent:

• %V is more ambiguity averse than %W ,

• V (f) ≤ W (f) for all f ∈ F .

Proof. The second item trivially implies the first one. To prove that %V more ambiguity
averse than %W implies W (f) ≥ V (f) for all f ∈ F , we proceed by countrapositive.

First, note that every function V in V is monotonic is the following sense: for all
f, g ∈ F , if f(s) % g(s) for all s ∈ S, then f %V g. Suppose W (f) < V (f) for
some f ∈ F . Acts being finitely-valued, u being non-constant and invoking the
monotonicity of V and W we can find consequences x∗, x ∈ X such that u(x∗) >
u(x) and u(x∗) ≥ V (f) > W (f) ≥ u(x). Applying a positive affine transformation
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if necessary, we may suppose (without loss of generality) u(x∗) = 1 and u(x) = 0.
By convex-rangedness of P2, there exists E2 ⊆ S2 such that P (E2) ∈ (W (f), V (f)).
Observe that P (E2) = EP2 [u(x∗E2

x)] = V (x∗E2
x) = W (x∗E2

x). Hence, V (x∗E2
x) ≥

V (f) while W (x∗E2
x) < W (f). %V is not more ambiguity averse than %W . 2

Lemma 17 The following statements are equivalent:

• Core(v1) 6= ∅,

• % is ambiguity averse,

• %CEU is ambiguity averse,

• %CEU is ambiguity averse.

In the case of %CEU , the equivalence between ambiguity aversion and the non-emptiness
of the core of v1 is already proven in Ghirardato & Marinacci (2002).

Proof. First, suppose Core(v1) 6= ∅ and fix P1 ∈ Core(v1). By monotonicity of Lebesgue’s
integral and monotonicity of Choquet’s integral with respect to the measure we
have that, for all g ∈ F , EP1 [EP2 [u ◦ g]] ≥ CEU(g) and EP2 [EP1 [u ◦ g]] ≥ ECU(g).
It immediately follows from these inequalities, by Lemma 14 and Lemma 16, that
%CEU and %ECU are ambiguity averse. Now, consider two consequences x∗, x ∈ X
such that x∗ � x (existence guaranteed by A5). Without loss of generality, we can
set u(x∗) = 1 and u(x) = 0. Note that, for all E ∈ B, EP1 [EP2 [u(x∗Ex)]] = P1⊗P2(E)
while CEU(x∗Ex) = v1 ⊗ P2(E). Thus, by first inequality above, P1 ⊗ P2(E) ≥
v1⊗P2(E) for all E ∈ B. We have seen in the proof of Proposition 1 that, CEU(g) =∫
S u ◦ g dv1 ⊗ P2 for all g ∈ F . Hence, by monotonicity of Choquet’s integral with

respect to the measure,
∫
S u ◦ g dP1 ⊗ P2 ≥ CEU(g). Finally, by Lemma 14 and

Lemma 16, we have that %CEU is also ambiguity averse.

Now, suppose % (resp. %CEU , resp. %CEU) is ambiguity averse or equivalently by
Lemma 16 that there exists a probability measure P defined on (S,B) such that
EP [u ◦ g] ≥ ECU(g) (resp. EP [u ◦ g] ≥ CEU(g), resp. EP [u ◦ g] ≥ CEU(g)) for all
g ∈ F . Consider two consequences x∗, x ∈ X such that x∗ � x and suppose (without
loss of generality) u(x∗) = 1 and u(x) = 0. Observe that for all E1 ⊆ S1 we have
P (E1 × S2) = EP [u(x∗E1

x)] ≥ ECU(x∗E1
x) = CEU(x∗E1

x) = v1(E1) = CEU(x∗E1
x).

Hence, the S1-marginal of P belongs to Core(v1). 2

Lemma 18 If % is ambiguity averse, then, % satisfies A8* (and thus A8).

Proof. Suppose % is ambiguity averse. By Lemma 17, there exists P1 ∈ Core(v1) and
as shown in the proof of this Lemma, it satisfies, EP2 [EP1 [u ◦ g]] ≥ ECU(g) or
equivalently by Lemma 14, EP1 [EP2 [u ◦ g]] ≥ ECU(g) for all g ∈ F . Consider
f2 ∈ F2 and g ∈ F satisfying f2 %2 g(s1, ·) for all s1 ∈ S1. By the representation of
Theorem 2 ECU(f2) ≥ ECU(g(s1, ·)) for all s1 ∈ S1. Observe that ECU(g(s1, ·)) =
EP2 [u ◦ g(s1, ·)] and therefore ECU(f2) ≥ EP1 [EP2 [u ◦ g]]. Hence, by hypothesis,
ECU(f2) ≥ ECU(g) or by the representation of Theorem 2 again, f2 % g. 2
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Lemma 19 If % satisfies A8, then, Core(v1) 6= ∅.

Proof. Consider a finite family {Ei
1}Ni=1 of events in 2S1 and a finite sequence of real

numbers {αi}Ni=1 ⊆ [0, 1] such that
∑N

i=1 α
i · 1Ei

1
= 1S1 . Note that it must be

α1 + . . .+ αN ≥ 1. Since P2 is convex-ranged, we can construct a partition {Ei
2}Ni=1

of S2 satisfying, for all i ∈ {1, . . . , N},

P2(E
i
2) :=

αi

α1 + . . .+ αN
.

Since α1 + . . .+ αN ≥ 1, we can also consider an event E2 ⊆ S2 satisfying,

P2(E2) :=
1

α1 + . . .+ αN
.

Now fix x∗, x ∈ X such that u(x∗) > u(x) (existence guaranteed since u is non-
constant). Applying positive affine transformation if necessary, we may suppose
(without loss of generality) u(x∗) = α1 + . . .+ αN and u(x) = 0. We define two
acts f2 ∈ F2 and g ∈ F as follows:

g(s1, s2) :=

{
x∗ if (s1, s2) ∈ Ei

1 × Ei
2 for some i ∈ {1, . . . , N},

x otherwise.

f2(s1, s2) :=

{
x∗ if s2 ∈ E2,
x otherwise.

By definition, for any s1 ∈ S1,

P2(g(s1, ·) = x∗) =

∑N
i=1 α

i · 1Ei
1
(s1)∑N

i=1 α
i

=
1S1(s1)∑N
i=1 α

i
=

1∑N
i=1 α

i
= P2(f2 = x∗),

and then necessarily
P2(g(s1, ·) = x) = P2(f2 = x).

In parallel,

ECU(g) =
N∑
i=1

αi · v1(Ei
1) and ECU(f2) = EP2 [u ◦ f2] = 1.

Then, by A8, f2 % g, and by the representation of Theorem 2,

N∑
i=1

αi · v1(Ei
1) ≤ 1 = v1(S1).

Finally, applying Schmeidler’s (1967) extension of Bondareva-Shapley’s theorem we
get Core(v1) 6= ∅. 2
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Proof of Proposition 5

Lemma 20 If v1 is convex, then, ECU(f) ≤ CEU(f) ≤ CEU(f) for all f ∈ F .

Proof. Fix an act f ∈ F and suppose (without loss of generality) max(u ◦ f) = 1 and
min(u ◦ f) = 0.. As we have seen in the proof of Proposition 1, the representations
ECU , CEU and CEU can be reformulated in several ways. Developing further
some of them we obtain:

ECU(f) =

∫
S
u ◦ f dP2 ⊗ v1 =

∫
[0,1]

∫
S2

∫
S1
1{u◦f≥t} dv1dP2dt,

CEU(f) =

∫
S
u ◦ f dv1 ⊗ P2 =

∫
[0,1]

∫
S1

∫
S2
1{u◦f≥t} dP2dv1dt,

CEU(f) =

∫
S1

∫
S2
u ◦ f dP2dv1 =

∫
S1

∫
S2

∫
[0,1]

1{u◦f≥t} dtdP2dv1.

Now, suppose v1 convex. By Schmeidler (1986),∫
S1

∫
S2

∫
[0,1]

1{u◦f≥t} dtdP2dv1

= minP1∈Core(v1)

{∫
S1

∫
S2

∫
[0,1]

1{u◦f≥t} dtdP2dP1

}
= minP1∈Core(v1)

{∫
[0,1]

∫
S1

∫
S2
1{u◦f≥t} dP2dP1dt

}
≥

∫
[0,1]

minP1∈Core(v1)

{∫
S1

∫
S2
1{u◦f≥t} dP2dP1

}
dt

=

∫
[0,1]

minP1∈Core(v1)

{∫
S2

∫
S1
1{u◦f≥t} dP1dP2

}
dt

≥
∫
[0,1]

∫
S2
minP1∈Core(v1)

{∫
S1
1{u◦f≥t} dP1

}
dP2dt.

All the changes in the order of integration are here justified since f is finitely-
valued and defined on the algebra generated by the rectangles. The triple inequality
ECU(f) ≤ CEU(f) ≤ CEU(f) follows from the third and the fifth inequalities
above. Indeed, by Schmeidler (1986) again we have:∫

[0,1]

minP1∈Core(v1)

{∫
S1

∫
S2
1{u◦f≥t} dP2dP1

}
dt = CEU(f)

∫
[0,1]

∫
S2
minP1∈Core(v1)

{∫
S1
1{u◦f≥t} dP1

}
dP2dt = ECU(f).

2
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The next Lemma immediately follows from Lemma 16.

Lemma 21 If ECU(f) ≤ CEU(f) ≤ CEU(f) for all f ∈ F , then,

• % is more ambiguity averse than %CEU ,

• %CEU is more ambiguity averse than %CEU ,

• % is more ambiguity averse than %CEU .

Lemma 22 If % is more ambiguity averse than %CEU (respectively %CEU), then, % sat-
isfies A9(i) (respectively A9(ii) and A9*).

Proof. Suppose % is more ambiguity averse than %CEU . Consider f, g ∈ F such that
{f(s1, ·) = x} ∼` {g(s1, ·) = x} for all s1 ∈ S1 and x ∈ X and such that f has
comonotonic S1-sections. Then, by Proposition 1, ECU(f) = CEU(f). However,
since f and g induce by assumption the same AA act, we have CEU(f) = CEU(g)
and obtain ECU(f) = CEU(g). Finally, since % is more ambiguity averse than

%CEU , Lemma 16 yields CEU(g) ≥ ECU(g), hence ECU(f) ≥ ECU(g) and f % g.
The proofs of A9(ii) and A9* are similar. 2

Lemma 23 If % satisfies A9, then, v1 is convex.

Proof. Now, suppose % satisfies A9. Consider E1, F1 ⊆ S1 and x∗, x ∈ X such that
u(x∗) > u(x) (existence guaranteed since u is non-constant). Applying positive
affine transformations if necessary, we may suppose (without loss of generality)
u(x∗) = 2 and u(x) = 0. P2 being convex-ranged, there exists E2 ⊆ S2 such that
P2(E2) = P2(E

c
2) = 1/2 or equivalently E2 ∼` Ec

2. Consider the two acts f, g ∈ F
defined as follows:

f := (x∗E1∪F1
x)E2(x

∗
E1∩F1

x) and g := (x∗E1
x)E2(x

∗
F1
x)

Observe that f and g induce the same AA act and f is slice-comonotonic. Moreover,
ECU(f) = v1(E1∪F1)+v1(E1∩F1) and ECU(g) = v1(E1)+v1(F1) Hence, applying
A9 yields f % g or equivalently v1(E1 ∪ F1) + v1(E1 ∩ F1) ≥ v1(E1) + v1(F1). We
have proven that v1 is convex. 2

Proposition 5 leaves an interesting question unanswered. Is it possible to compare CEU
and CEU in terms of the ambiguity aversion they reveal? Lemmata 16 and 21 show that
when v1 is convex %CEU is necessarily more ambiguity averse than %CEU . However, the
converse may fail to hold. For instance, we have CEU = CEU over all F whenever X has
only two elements, even if v1 is not convex.
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Proof of Proposition 6

Axiom A10* is obviously necessary for v1 to be additive. Moreover, Axiom A10* implies
Axiom A10 which in turn implies that A9 but also the following “dual version” of A9 which
captures an aversion to slice-comonotonicity:

(A9’) For all f, g ∈ F with f slice-comonotonic, if {f(s1, ·) = x} ∼` {g(s1, ·) = x} for all
s1 ∈ S1 and x ∈ X , then, f - g.

We can prove that A9’ implies the concavity of v1 in the same way we have proven that
A9 implies the convexity of v1. Finally, we have that A10 implies the additivity of v1.
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